- Industrial design
- Width 55mm
- True power monitoring
- Fault latch
- Position of output relay presettable
- 1 change over contact

Technical data

- 1. Functions

True power monitoring (overload or underload) of 1- and 3-phase motors with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable

The following functions can be selected by means of DIP-switches DIP-switch 1,2,3 selection of current range
DIP-switch 4 underload monitoring (ON)
DIP-switch $5 \quad$ or overload monitoring (OFF)
DIP-switch 6 or relay in off-position if fault occurs - n.c. (ON)
DIP-switch 7
DIP-switch 8
DIP-switch 9
DIP-switch 10,11 alarm for disconnected consumer ($I=0$) fault latch
fault simulation
time range of start-up suppression time time range of tripping delay

- 2. Time ranges

Start-up suppression time:
Tripping delay:

Adjustment range	
1 s	20 s
5 s	100 s
0.1 s	5 s
1 s	5 s

- 3. Indicators

Green LED ON: Green LED flashes: Red LED flashes: Red LED ON:
All LEDs flashing:
indication of supply voltage indication of start-up suppression time indication of tripping delay
indication of fault
indication of disconnected consumer (if l = 0)

- 4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
nitial torque:
max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

- 7. Measuring circuit

Input 1-phase mains

3-phase mains
Voltage range
1-phase mains:
3-phase mains:
Overload capacity
1-phase mains:
3-phase mains:
Current range:
Overload capacity
Input resistance:
Switching threshold P_{s} :
voltage:
current:
voltage: current:
terminals L1i-B1
terminals L1i-L1k
terminals L1i-L2-L3 terminals L1i-L1k

0 to 230 V AC
0 to $3 \sim 400 / 230 \mathrm{~V}$
256 V AC
3~450/259V
1 to 10A
12A
$<20 \mathrm{~m} \Omega$
0\% to 100\%

- 8. Accuracy

Base accuracy: Adjustment accuracy:
Repetition accuracy
Voltage influence:
Temperature influence:
$\pm 5 \%$ (of maximum scale value) $\pm 5 \%$ (of maximum scale value) $\pm 5 \%$
$\pm 2 \%$
$\leq 0.03 \% /{ }^{\circ} \mathrm{C}$

- 9. Ambient conditions

Ambient temperature:
Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree:
-25 to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1) -25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15\% to 85\%
(according to IEC 721-3-3 class 3K3)
3 (according to IEC 664-1)

5. Input circuit

Supply voltage:

12 to 440 V AC
Tolerance:
Rated frequency: Rated consumption: Duration of operation
Reset time:
Residual ripple for DC:
Drop-out voltage:
terminals A1-A2 (galvanically separated) selectable via transformer modules TR3
-15% to $+10 \%$
48 to 63 Hz
4VA (3W)
100
$<1 s$
$>30 \%$ of the supply voltage
6. Output circuit

1 potential free change over contact
Switching capacity:
Fusing:
Mechanical life:
Electrical life:
Switching frequency:

Insulation voltage:
Surge voltage:

1200 VA (5A / 250V AC)
5A fast acting
20×10^{6} operations
at 1000 VA resistive load
max. 60/min at 100VA resistive load max. $6 / \mathrm{min}$ at 1000VA resistive load (according to IEC 947-5-1)
250 V AC (according to IEC 664-1) 4 kV , overvoltage category III (according to IEC 664-1)
10. Dimensions

Functions

True power monitoring (overload or underload) of 1- and 3-phase motors with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable

When the supply voltage U is applied, the set interval of the start-up suppression (t_{2}) begins (green LED flashes). Changes of the true power during this period do not affect the state of the output relay R. After the interval has expired the green LED is illuminated steadily.

The following functions can be selected by means of DIP-switches:
Underload monitoring (DIP-switch MIN in position ON) When the measured value for the true power falls below the value adjusted at the P_{S}-regulator, the set interval of the tripping delay $\left(t_{1}\right)$ begins (red LED flashes). After the interval has expired and if the DIP-switch RELAY (5) is in the position ON (n.c.), the output relay R switches into off-position (red LED illuminated). When the measured value for the true power again exceeds the set value, the output relay switches into on-position (red LED not illuminated).
When the DIP-switch RELAY is in the position OFF (n.o.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Overload monitoring (DIP-switch MIN in position OFF) When the measured value for the true power exceeds the value adjusted at the P_{s}-regulator, the set interval of the tripping delay $\left(\mathrm{t}_{1}\right)$ begins (red LED flashes). After the interval has expired and if the DIPswitch RELAY is in the position ON (n.c.), the output relay R switches into off-position (red LED illuminated). When the measured value for the true power again falls below the set value, the output relay switches into on-position (red LED not illuminated).
When the DIP-switch RELAY is in the position OFF (n.o.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Disconnected consumer (DIP-switch I=0 in position ON)

When the current in the phase L1 is less than 5\% of the nominal value of the selected current range and the DIP-switch RELAY is in the position ON (n.c.), the output relay R switches into off-position (irrespective of the actual position) and both LEDs flash.
When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up suppression $\left(\mathrm{t}_{2}\right)$ (green LED flashes).
When the DIP-switch RELAY is in the position OFF (n.o.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Fault latch (DIP-switch MEM in position ON)

For both functions (overload as well as underload monitoring) it is possible to activate a fault latch.
When the DIP-switch MEM is in the position ON, a short term error will be stored after the expiration of the tripping delay $\left(\mathrm{t}_{1}\right)$. The measuring cycle is restarted with the set interval of the start-up suppression (t_{2}) (green LED flashes) after activating the internal reset key or after disconnecting and re-applying the supply voltage.

Test function (DIP-switch TEST in position ON)

Pressing the internal test key forces the output relay R to switch into off-position, if the measured value of the true power is within the admissible range and if the DIP-switch RELAY is in the position ON (n.c.).

When the DIP-switch RELAY is in the position OFF (n.o.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Connections

