

Danger! Never carry out work on live parts! Danger of fatal injury! Te

The complete manual is available at:
http://www.tele-online.com/resources/data-sheets/en_NA003_Manual.pdf
This Quick Start Guide does not teplace the manual and the owner should read in
conjunction with the whole Manual.
The safety instructions are to be observed

- The safety instructions are to be observed

Intended use:

The TELE NAOO3 is a Grid and System Protection Device for the use with energy producing
generation plants like combined heat and power plants, wind power plants, waterpower plants as well as seneration plants ike combined heat and power plants, wind power plants, waterpower plants as well as hotovoltaic plants.
case of power
mmediately from mains to avoid unintentionalies private power plants have to be disconnected feeding could endanger maintenance stafts, on the other hand connected devices could be exposed to nadmissible voltages and/or frequencies.

In case the grid operator requires thresholds that are not conform with the specific standards, it is partially
possible to set thresholds outside the normative defined rangel ossible to set thresholds outside the normative defined range.
outside these range the device is not in accordance with the standards anymore and the
orresponding certificate loses validity! This state is indicated as "ncfm" on the display. Settings outside the conformity range are therefore in responsibility of the operator respectively the
acceptance authority!

Safety note:

The device was developed, produced and tested in accordance to the latest industry standards. Nevertheless improper handling or use can endanger humans and machines.
Pease use the device only in accordance with the installation and operating instructions. Check revention applicable to the place of use must be strictly followed.

> Eliminate all faults inmediately which may endanger safety! Do not make any unauthorised changes and only use replac
acessories purchased fromed changes and only use replacement parts and optiona
In case of obvious damage the device must be checked
In case of obvious damage the device must be checked and replaced if necessary!
Country specific regulations have to be considered in any casel
If required by national standards, the NAOO3 has to be protected against unauthorized
changes by password and/or sealing!

> | Mounting on DIN rail according to EN 60715: |
| :--- |
| Snap the rear mounting clip of the device into place in such a way that a safe and tight fit is ensured. |

Available configurations:

EI O-21, VDE V 0126-1-1, VDE-AR-N 4105, according to VDE V 0124-100
 OENorm E $8001-4-712$, EN50438, ENSO 0438 (DK), OPEN SETUP

Terminals:		
A1, A2	Supply	$\begin{aligned} & \text { DC: } 24 \mathrm{~V} \\ & \text { AC: } 110-230 \mathrm{~V} \\ & \text { A1: } \mathrm{L}(+) \\ & \text { A2: } N(-) \end{aligned}$
L1, L2, L3, N	Measuring input	$\mathrm{Un}_{\mathrm{N}}: 3 \times 400 \mathrm{VAC}$
11, 12, 14	Relay channel A (CO contact) Status indication via yellow LED R1	Potential free changeover contact 11: Common 12: Normally closed contact 14: Normally open contact
21,22, 24	Relay channel B (CO contact) Status indication via yellow LED R2	Potential free changeover contact 11: Common 12: Normally closed contact 14: Normally open contact
31,32,34	Relay channel D (CO contact) Status indication via yellow LED R3	Potential free changeover contact 11: Common 12: Normally closed contact 14: Normally open contact
11, 1	Digital input 1 (Feedback contact contactor A)	Potential free ($24 \mathrm{~V} / 5 \mathrm{~mA}$) Input active: 11 and \perp connected
$12, \pm$	Digital input 2 (Feedback contact contactor B)	Potential free ($24 \mathrm{~V} / 5 \mathrm{~mA}$) Input active: 12 and \perp connected Does not apply to national standards without functional safety!
13, 1	Digital input 3 (Remote disconnection)	Potential free ($24 \mathrm{~V} / 5 \mathrm{~mA}$) Input active: 13 and \perp connected
$14,15, \perp$	Digital inputs 4 und 5 (Parameter switchover)	Applies to CEI 0-21 Potential free ($24 \mathrm{~V} / 5 \mathrm{~mA}$) Input active: 14 resp. 15 and \perp connected

Technical data:	
Supply circuit	
Terminals:	A1 (L+); A2 (N -
Supply voltage:	DC: 24V
Supply voltage tolerance:	DC: $\pm 10 \%$
	AC: $\pm 30 \%$
Rated frequency:	$50 / 60 \mathrm{~Hz}$
Tolerance of rated frequency:	$48-63 \mathrm{~Hz}$
Rated surge voltage:	4 kV
In order to ensure the proper function during power failures, an external UPS has to be used.	
Measuring circuit	
Terminals:	L1-L2-L3-N
Measuring input:	$3 \times 400 \mathrm{VAC}$
Measurand:	line to line voltage, line to neutral voltage, 10 minutes average voltage, frequency, ate of change of frequency (RoCoF) phase shift (PShift)
Measuring ranges	
Line to line voltage:	0-560VAC
Line to neutral voltage:	0-325VAC
Frequency:	$40-65 \mathrm{~Hz}$
RoCoF:	100mHz/s ... $2.000 \mathrm{mHz} / \mathrm{s}$
Pshift:	1-15 ${ }^{\circ}$
Digital inputs	
Terminals:	11 and \perp; 12 and \perp; 13 and \perp; 14 resp. 15 and \perp
Type of contact:	potential free
Min. switching voltage / switching current:	$24 \mathrm{~V} / 5 \mathrm{~mA}$
Output circuit	
Terminals:	R1: $\quad 11-12-14$
	R2: R3: $\quad \begin{aligned} & \text { 21-22-24 } \\ & 31-32-34\end{aligned}{ }^{\text {a }}$ (
Number of contacts:	R3: 3 changeover contacts
Contact material:	AgNi
Rated current:	$5 \mathrm{~A} / 250 \mathrm{VaC}$
Electrical endurance:	100×10^{3} switching cycles (AC-1)
Mechanical endurance:	15×10^{6} switching cycles
Accuracy	
Base accuracy:	<0,5\% @ +25 ${ }^{\circ} \mathrm{C}$
Temperature influence:	$<0,01 \% /{ }^{\circ} \mathrm{C}$
Frequency monitoring:	
Base accuracy:	$<0,01 \mathrm{~Hz}$ @ $+25^{\circ} \mathrm{C}$
Temperature influence:	$<0,0002 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$
Resolution:	1 mHz
Isolation data	
Rated insulation voltage:	400 V
Supply circuit / Measuring circuit:	protective separation
Supply circuit / Output circuit:	protective separation
Supply circuit / Digital inputs:	protective separation
Output circuit / Measuring circuit:	basic insulation
Output circuit / Digital inputs:	basic insulation
Environmental conditions	
Ambient temperature operation:	$-25 . .+55^{\circ} \mathrm{C}$
Ambient temperature storage:	$-40 \ldots+70^{\circ} \mathrm{C}$
Visibility temperature display:	$-15 . . .+55^{\circ} \mathrm{C}$
Relative humidity:	$5 . . .95 \%$ (non-condensing)
Weight:	300 g
Electrical connection	
Wire size:	max. $2,5 \mathrm{~mm}{ }^{2}$
Stripping length:	max. 8 mm
Electrical strength:	max. $450 \mathrm{~V} / 16 \mathrm{~A}$ (digital inputs; relay outputs) max. 750V/16A (measuring inputs)
Torque:	max. $0,5 \mathrm{Nm}$ (
Screw:	M3, slotted recess for screw driver 0,6 $\times 3,5 \mathrm{~mm}$
Sealing wire	\varnothing max. $0,8 \mathrm{~mm}$

