

# Technology for More Time and Greater Security 



TELE Haase was founded in 1963 and is Austria's market leader in developing state-of-the-art monitoring, control and automation technology.

TELE products are being used the world over and are most often used in control cabinets, industrial plants and transformer stations, as well as being utilized in wind, water, and solar energy power plants.

TELE's developments meet international quality standards and contribute to environmentally friendly generation of renewable energy using water, wind and the sun

TELE Haase, a company for the future, has set out to actively shape social change toward sustainability over the long term by offering technology that will help industries to be more efficient, green, and worker friendly.

More than 80 highly qualified TELE employees fulfill the high requirements and requests of our customers day after day.

# We are the Austrian market leader for timing and monitoring relays. Our relays might be small but they master a huge variety of applications. 

## V Wide range of timing relay products

## - Monitoring devices for physical quantities such as current, voltage, temperature, frequency, level, power factor, active power, ...

## - Provider of high-quality industrial switching relays and power electronics

## - Extensive technical expertise thanks to 55 years of experience

Global sales network


# Your Smart Factory 

## We make the world better with what we do best - clever technology



But as "smart implementers", we are not necessarily the "inventors". By collaborating with customers, partners and innovators, we turn sustainable ideas into practical solutions.

For us, our „Smart Factory" is a playground where we can take action in accordance with our values and create new things together.

## So what exactly is the Smart Factory?

TELE is a laboratory of innovation. With a lot of technical know-how and people who enjoy their work. TELE combines technologies. Cooperates with others. Free of traditional hierarchies. With plenty of room for independent thinking and extraordinary ideas. TELE develops and produces solutions for a better world.

## We develop clever technologies with

solid engineering know-how
Our relays and electronics can be found throughout the world, wherever reliability is important. In large wind turbines. At sensitive locations on machines and systems. In every corner of smart cities. And wherever things simply must work correctly.

As a specialist in high-quality industrial electronics, covering everything from monitoring technology and time relays through power electronics to grid and system protection, our solutions help boost safety wherever they are used. For greater reliability. And more efficiency and sustainability.

If you are looking for a real partner, you will find one in us
We have the experience and desire to explore new possibilities, so we collaborate with startups, partners and customers to develop monitoring and control solutions for special problems. Thanks to our modular developer's platform, we can find the magical formula for just about any problem in a very short period of time.

## How do you benefit from this?

- Short development and realization times
- Proven modular components
- Ability to integrate into the customer's system
- Scalable in price and performance
- In-house development and production with optimised batch sizes

We are ready for your challenge!
What we are good at
Because we are committed to making the world better together, we are especially interested in technology that is sustainable and improves our living conditions or production environment.

## - Renewable energies

- Water \& Waste
- Industrial systems \& mechanical engineering
- Building management
- Traffic engineering
- Smart cities


## Autonomous organisation is better

Hierarchies are rigid and prevent growth and flexibility. So we left traditional corporate structures behind and brought our processes and employees to the forefront. This gives them the freedom they need for personal commitment and exceptional ideas. The focus is on individual responsibility, cooperation, transparency, esteem and fun. Every employee contributes and helps shape the company.

# Motor Starter P4.0 

## $22,5 \mathrm{~mm}$ compact motor starter including motor protection

## Functionality

Today's drive solutions require powerful and flexible instruments. The compact motor starter P-4.0 from TELE can be used for motors up to 4.0 kW @ 400 V and includes 5 functions in one compact unit, requiring only $22,5 \mathrm{~mm}$ width. This intelligent instrument offers soft start, soft stop, forward/reverse, current protection and an electronic motor protection.

Offering the integrated motor protection plus isolation relays the use of an MCB is no longer necessary. A simple circuit breaker protects the installation against short circuit and faulty wiring. The soft start and stop function is performed by semiconductors (thyristors) and the reversing function by internal relays, operated in the standstill phase. After performing the start/stop function the semiconductors are bypassed by integrated relays to minimize power dissipation. The intelligent combination of semiconductors and relays increases lifetime and efficiency of the product. The integrated current limit protects motors, shafts and plants from mechanical stress and reduces maintenance and standstill times.


Technical features

- Forward/Reverse of 3-ph ac motors 3 AC 480 V / 9 A, equals 4.0kW @ 400VAC
- integrated reversing unit
- 2-ph control for softstart and stop
- Integrated bypass relays
- 3 pots for adjustment of torque, time and max. current
- 4 LEDs indicate status and error
- Reset button on front and external reset available
- Dimension in mm (W $\times H \times D$ ): $22,5 \times 105 \times 120,3$
- Article number: 490800 (F/R + blocking protection)

490801 (F/R + motor protection + isolation contactor)

## Your advantages

- Up to 5 functions in one instrument:

■ Forward/Reverse, soft start, current limit, motor protection, soft stop.

- Minimized space consumption, only 22.5 mm width
- Simple commissioning and easy operation
- Robust semiconductors with 1500 V max. isolation voltage
- Increased system availability by motor protection function
- Increased lifetime by hybrid design compared to relay solution
- Energy saving by bumpless soft start/stop function and bypass relay


## Applications

- Reversing of drive for door, lifting and transport application with blocking protection.
- Transport systems (belts and rollers) with blocking protection
- Motorized valves in process applications (chemical and petrochemical, power generation plants)
- Pumps and fans
- Switching of 3 ph transformers
- ... and a lot of other applications with sophisticated drive requirements

Advantage of power control with semiconductors

- Switching without any wear

Extended lifetime

- Frequent start / stop events
- Little space occupation
- Fast switching

■ Usable in industrial environment

## Functions

- Reversing direction (forward / return)
- Softstart / Softstop
- Overcurrent protection
- Motorprotection (option)
- Isolation relays (option)


# BAD This would not have $-\cdots$ happened with TELE! 

## VEO - V4LM4S30

The new $V 4 L M$ electrode relay from TELE for level monitoring in conductive fluids combines 10 different functions in one very compact device. It monitors the level of a fluid via probes, which are directly immersed.

Depending on the function selected, the V4LM controls the pumping in and pumping out as well as the running dry and overflow alarm. The device is utilized wherever observing a defined fill level represents an important criterion for the function, efficiency and safety. It protects machines and systems from leakage damage, fluid loss as well as running dry or overflow.

## Function

Unlike float switches, the TELE V4LM has no moving parts and thus has a high service life. In contrast to ultrasonic and radar measurements, the device is resistant to contamination, dust, foam and mist in the containers. With extremely low probe voltage, small measuring currents and a large sensitivity window from 0.25 to 500 kOhm , the fill level measurement is suitable for feed applications and does not endanger the animals. The selected measuring frequency of 18.3 Hz enables an extremely robust measurement without interference (no harmonics to mains frequency 50 or 60 Hz ). In addition, the alternating current measurement prevents the build-up of oxyhydrogen gas as well as electrolytic disintegration of the probes, which can occur with comparable devices with direct current measurement.

Advantages

- No moving parts (compared to a float switch)
- Robust against soil, dust, foam, mist in the containers (as opposed to ultrasound and radar measurements)
- Extremely low probe voltage and measuring currents, therefore also suitable for feeding applications

■ Extensive sensitivity window ( 0.25 to 500 kOhm)

- Robust measurement without interference by selecting the measuring frequency of 18.3 Hz (no harmonic to mains frequency 50 or 60 Hz ), AC measurement also avoids oxyhydrogen gas formation and electrolytic decomposition of the probe.

Level control between probes E2 and E3 by pumping up. The probes E1 and E4 serve as overflow- resp. dry running alarm and may be used to control alarm devices, valves or additional pumps.

| Function 3 | Pump Up and Down (bidirectional) <br> with Minimum Alarm (3b-) <br> 1 container, 4 probes, 2 pumps |
| :--- | :--- |




Pump down between the probes E1-E2 resp. E3-E4. (alternatively control around one probe). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.


## TELE SensAct

## The new, compact, monitoring modules with ModBus RTU interface, for highly accurate and reliable measurement generate many measured values for a PLC or other master devices.

TELE introduces a new range of communication-capable monitoring devices with ModBus RTU interface with the focus on electric energy applications and monitoring of key electrical values in industrial plants. The modules reliably measure current / voltage / power / energy and various other electrical values in single or three phase networks and deliver, on request, the easured values via ModBus RTU to a PLC or data logger. The fast measurement cycle and fast responding data transmission gives the operator a clear view at the condition of his system. These accurate process data enable process specialists to adapt maintenance intervals accordingly and help to avoid costly unscheduled downtimes.


Up to 500V P-P and universal CT input with ModBus RTU / RS485 interface and programmable digital switch in one module size $(17,5 \mathrm{~mm})$. In version S1XMmHM also including harmonic analysis up to 63rd, THD, I/ V peak. Advanced software and energy counter.


1-phase AC/DC current
transformer with ModBus RTU

## Converter design

TRMS measurements up to 50A or up to 300A, frequency range DC or 20... 2000 Hz , bipolar, analog $0-10 \mathrm{~V}$ and serial output ModBus RTU/ RS485, adjustable range by dip switch and RS485, DIN rail mounting horizontal or vertical.


1-phase power meter AC/DC with ModBus RTU

## Converter design

AC up to 50A or up to 300A and DC up to 50A or up to 400A with ModBus RTU / RS485 interface, DIN rail mounting, Frequency range DC or 1 to 400 Hz ; measurements: Irms, Vrms, Watt, VAr, VA, Vpk, Ipk, frequency, $\operatorname{Cos} \varphi$, energy bidirectional, THD voltage versions: 800 V AC / 1000 V DC or 80 V AC / 100VDC for low voltage applications.


1-phase universal current/voltage converter with ModBus RTU

## Installation design

universal sensor input, analog output and RS485 ModBus RTU, RMS, AC and DC measurement, min / max and average measurement, frequency and crest factor measurement, temperature and resistance measurement (PT100 or NTC) and internal temperature measurement.

Serial converter USB-RS485
(isolated up to 5 kV )
USB
The S-USB485 is a serial converter isolated up to 5 kV , based on chip USB FTDI. Windows validated drivers download automatically when your $P C$ is online. This device connects safely to any ModBus devices on RS485.

## Our specialists



Voltage drop detector V2UF230V10
Detects voltage drop / short interruptions of at least 10 ms (refer to page 30)


Timer COM3T
Multifunctional, combinable to industrial relays with socket (refer to page 46)


Current monitoring relays V4IM100AL20, V4IM35AL20 with built-in current transformer (refer to page 31)


Power monitor G4CM690V16ATL20 or inductive and capacitive loads (refer to page 35)

# Product classes 

## Our product range consists of the following high quality products:



Monitoring relays
Power monitors


Timing relays can make system and machine operation even more efficient. They check the time for you, for example if wind turbines need to be switched off or if it's time to fertilize your grapevines for a specified length of time. Your production is never thrown off its rhythm, which saves you money.

Monitoring relays measure and monitor current, voltage, temperature, frequency, level, power factor and active power. A variety of different enclosures for control technology, industrial systems, machinery and building installations allow for flexible use of relays. The rugged design offers excellent usability and installability.

Power monitors measure such variables as the power factor of a motor or the true power of a pump or fan. These measurements provide indications and important information about the state and functioning of machinery and installations, which reduces maintenance costs, service and downtime.

Grid and system protection An automatic disconnection device monitors the feed-in of energy to the 230/400V grid. In case of a power failure or disruptions by the energy supplier it is vital for small power plants to be disconnected within a few milliseconds to avoid any danger to people and equipment.

Complementary products:

- Coupling units and signal converter
- Switching relays + sockets
- Current transformers
- Softstarter, Thyristor control units and braking units
- Hour meters and timers
- Switching power supplies


# Product series 

## Our large and small quartet: ENYA, VEO, GAMMA and KAPPA - play it safe!



|  | ENYA | VEO | GAMMA | KAPPA |
| :---: | :---: | :---: | :---: | :---: |
| Product category | Timing \& monitoring relays, coupling units | Timing \& monitoring relays | Timing \& monitoring relays, power monitors, grid and system protection | Timing \& monitoring relays |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 / 35 \times 87 \times 65 \mathrm{~mm}$ | $22.5 / 45 \times 67 \times 76 \mathrm{~mm}$ | $22.5 / 45 \times 90 \times 108 \mathrm{~mm}$ | $38 \times 51 \times 80 \mathrm{~mm}$ |
| Design | Installation design | Compact industrial design | Industrial design | Industrial Plug-In design, 11-poles |
| Labelling area | - | Freely positionable or fixed | Fixed | Fixed |
| Product standards | EN 61812-1 EN 60947 | EN 61812-1 EN 60947 | EN 61812-1 EN 50178 EN 60947 | $\begin{gathered} \text { EN 61812-1 } \\ \text { EN } 50178 \end{gathered}$ |
| Energy consumption | 0.8-1.3W | extra low: 0.35-0.6W | 1-1.5W | 0.8-2W |
| Electrical connection | Screw terminal | Push-in terminal or screw terminal | Screw terminal | Plug-in Housing mounted on screw terminal socket |
| Overvoltage category / Rated impulse withstanding voltage | III / 4kV | III / 4/6kV (protective separation) | III / 4/6kV | III / 4kV |
| Application field | Building | Industrial automation | Industrial automation | Building |
| Base accuracy | $\leq 5 \%$ | $\leq 2.5 \%$ | $\leq 3 \%$ | $\leq 5 \%$ |

# Product features 

## Each of our products is characterized by special product features:

## ENYA



Installation design ( 45 mm standard front dimension)

Timing and monitoring relays, single and multifunction

Width 17.5 mm and 35 mm , 1 or 2 changeover contacts (CO)

UL listed, CE conformity marking
Temperature range - 25 to $+55^{\circ} \mathrm{C}$
Recessed potentiometer buttons, analog indication by means of LED

12 to 240 V AC/DC, powered by measuring circuit

Industrial design for mounting plate and cable channels

Timing and monitoring relays, single and multifunction

Width 22.5 mm and 45 mm , 1 or 2 changeover contacts (CO)

Low profile
UL listed, CE conformity marking

Temperature range - 25 to $+60^{\circ} \mathrm{C}$
Recessed potentiometer buttons, analog indication by means of LED

12 to 240 V AC/DC, powered by measuring circuit


## GAMMA

## KAPPA

Industrial design

Timing and monitoring relays, single and multifunction

Width 22.5 mm and 45 mm , 1 or 2 changeover contacts (CO)

UL listed, CE conformity marking

Temperature range - 25 to $+55^{\circ} \mathrm{C}$

Recessed potentiometer buttons, analog indication by means of LED, digital indication by means of LCD-Display

12 to 240V AC/DC, powermodules 12 to 500V AC; 24V DC

Industrial Plug-In housing (45 mm standard front dimension)

Timing and monitoring relays, single and multifunction

Width 35 mm, 2 changeover contacts (2CO) or 1 changeover and 1 normally open contact (1CO + 1NO)

CE conformity marking

Temperature range -25 to $+55^{\circ} \mathrm{C}$

Recessed potentiometer buttons, analog indication by means of LED

12 to 240V AC/DC, powered by measuring circuit


# Function overview timing relays 

## Our timing relays have a variety of functions here they are in detail:



## S Star-Delta Start-up



When the supply voltage $U$ is applied, the star-contact switches into on-position and the set star-time t1 begins. After the interval $t 1$ has expired the star-contact switches into off-position and the set transit-time $t 2$ begins. After the interval t2 has expired the delta-contact switches into on-position. To restart the function the supply voltage must be interrupted and re-applied.

## ER <br> ON delay and OFF delay with control contact



The supply voltage $U$ must be constantly applied to the device. When the control contact S is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position. If the control contact is opened, the set interval t2 begins. After the interval t2 has expired, the output relay Switches into offposition. If the control contact is opened before the interval t 1 has expired, the interval already expired is erased and is restarted with the next cycle.


When the supply voltage $U$ is applied, the release for the interval starts. When the control contact $S$ is closed, the set interval $t$ begins. If the control contact $S$ is opened during the set interval $t$, the interval stops, and the already expired interval is stored. During the lapse of time the control contact can be opened or closed as often as required. If the sum of the periods, in which the control contact $S$ is closed reaches the set interval $t$ the output relay $R$ switches into on-position. The interval is stopped and a further activation of the control contact $S$ remains without effect. By interrupting the supply voltage, the device will be reset. A possibly expired time t is deleted.
LED U/t


When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval $t$ begins. After the interval $t$ has expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is reconnected before the interval t has expired, the unit continues to perform the actual single shot.


## EWs $\quad$ ON delay single shot leading edge with control contact



The supply voltage $U$ must be constantly applied to the device. When the control contact S is closed, the set interval t1 begins. After the interval t1 has expired, the output relay R switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

## Wa Single shot trailing edge with control input



The supply voltage $U$ must be constantly applied to the device. Closing the control contact $S$ has no influence on the condition of the output R. When the control contact is opened, the output relay switches into on-position and the set interval $t$ begins. After the set interval has expired, the ouput relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

## $\mathrm{nWa} \quad$ Maintained single shot trailing edge



When the supply voltage $U$ is supplied, the output relay $R$ remains into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position and the set interval $t$ begins. After the set interval $t$ has expired the output relay switches into off-position. When the supply voltage is reconnected before the interval $t$ has expired, the unit continues to perform the actual single shot.

## nWuWa Maintained single shot leading and trailing edge



When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval $t$ begins. After the interval $t$ has expired the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again and the set interval $t$ begins. After the set interval $t$ has expired the output relay switches into off-position. If the supply voltage is interrupted ( nWu ) or reconnected $(\mathrm{nWa})$ before the interval t has expired the unit continues to perform the actual single shot

## WsWa Single shot leading and single shot trailing edge with control contact



The supply voltage U must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into off-position. If the control contact is opened, the output relay again switches into on-position and the set interval t2 begins. After the interval t2 has expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times.

## Bi $\quad$ Flasher pulse first



When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval $t$ begins. After the interval t has expired, the output relay $R$ switches into off-position and the set interval $t$ begins again. The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.


When the supply voltage $U$ is applied, the set interval $t$ begins. After the interval $t$ has expired, the output relay $R$ switches into on-position and the set interval $t$ begins again. After the interval $t$ has expired, the output relay switches into off-position. The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.


When the supply voltage $U$ is applied, the set interval t1 begins and the output relay $R$ switches into on-position. After the interval t 1 has expired, the set interval t 2 begins. So that the output relay R remains in on-position, the control contact $S$ must be closed and opened again within the set interval t2. If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

## li

When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval t 1 begins. After the interval t1 has expired, the output relay switches into off-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into on-position. The output relay is triggered at the ratio of t1:t2 until the supply voltage is interrupted.
B1
R


In this mode, every keypress of the pushbutton (control input) toggles the output relay R (flip-flop). In function P, the output relay remains in off-position, whenever the supply voltage is applied. In function PN, the output relay switches into on-position after applying the supply voltage $U$, if the output relay was in on-position last before power failure. In both functions the output relay switches into on-position, if a short voltage impulse ( $<2 \mathrm{~s}$ ) is applied to the additional control input (central ON). A longer voltage impulse (>2s) opens the output relay (central OFF).

## $P(R) \quad$ Impulse switch mode with off delay



In this mode, every keypress toggles the output relay R (flip-flop). After the pushbutton (control input) has been pressed, the output relay closes and the set interval $t$ begins. After the interval has expired the output relay switches into off-position. If the pushbutton is pressed again before the interval has expired, the interval will be canceled and the output relay switches into off-position.

| TYPE DESIGNATION | E1ZM10 | E1ZM20 | E1ZMQ10 | E1ZMW10 | E3ZM20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | $\begin{aligned} & 110100 \text { (12-240V) } \\ & 110200 \text { (24-240V) } \end{aligned}$ | 110210 | 110202 | - | 111100 |
| Art. No. package 10 pcs. | $\begin{aligned} & \text { 110100A (12-240V) } \\ & \text { 110200A (24-240V) } \end{aligned}$ | - | 110202A | 110206A | - |
| FUNCTIONALITY | MULTIFUNCTION | MULTIFUNCTION | MULTIFUNCTION | MULTIFUNCTION | MULTIFUNCTION |
| E On delay | ■ | ■ | ■ | ■ | $\square$ |
| R Off delay | $\square$ | $\square$ | ■ | $\square$ | $\square$ |
| Es On delay with control contact | - | $\square$ | - |  | $\square$ |
| Wu Single shot leading edge, voltage-controlled | ■ | $\square$ | - | - | ■ |
| Ws Single shot leading edge with control contact | - | ■ |  | - | $\square$ |
| Wa Single shot trailing edge with control contact | ■ | ■ |  | ■ | $\square$ |
| Bp Flasher pause first | $\square$ | $\square$ |  |  | $\square$ |
| Wt Pulse repetition analysis |  |  |  | - |  |
| WsWa Single shot leading and trailing edge with control contact |  |  |  | - |  |
| POWER SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $\begin{aligned} & 12-240 \mathrm{~V} \mathrm{AC/DC} \\ & 24-240 \mathrm{~V} \text { AC/DC } \end{aligned}$ | 24-240V AC/DC | 24-240V AC/DC | 24-240V AC/DC | 12-240V AC/DC |
| Setting range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges | 7 |  |  |  |  |
| Setting range | $0.05 \mathrm{~s}-100 \mathrm{~h}$ |  |  |  |  |
| INPUT CIRCUIT |  |  |  |  |  |
| Control signal | ■ | ■ | ■ | $\square$ | $\square$ |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | $1 \mathrm{CO}, 1$ NO contact | 1 CO contact | 1 CO contact | 1 CO contact |
| Max. switching capacity | 2000VA (8A / 250V AC) |  |  |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ |  |  |  | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates | CE, cULus, EAC | CE, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC |


| TYPE DESIGNATION | E1ZNT | E1Z1E10 | E1Z\|10 | E3Z120 | E3ZS20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | 110500 | - | 110101 | 111101 | 111300 |
| Art. No. package 10 pcs. | - | 110204A | - | - | - |
| FUNCTIONALITY | EMERGENCY LIGHT TESTER | ON DELAY | ASYMMETRIC FLASHER | ASYMMETRIC FLASHER | STAR DELTA |
| E On delay |  | - |  |  |  |
| ER On delay and off delay with control contact |  |  |  | ■ |  |
| EWu On delay single shot leading edge, voltage-controlled |  |  |  | ■ |  |
| Ws Single shot leading edge with testkey | ■ |  |  |  |  |
| EWs On delay single shot leading edge with control contact |  |  |  | $\square$ |  |
| Ip Asymmetric flasher pause first |  |  | $\square$ | - |  |
| li Asymmetric flasher pulse first |  |  | $\square$ | $\square$ |  |
| Wt Pulse repetition analysis |  |  |  | $\square$ |  |
| Wswa Single shot leading and trailing edge with control contact |  |  |  |  |  |
| S Star-Delta start-up |  |  |  |  | $\square$ |
| POWER SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | 230 V AC | 24 to 240V AC/DC | 12 to 240 V AC/DC | 12-240V AC/DC | 12-240V AC/DC |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges | 1 | 7 | 7 | 7 | 4 |
| Setting range | $10 \mathrm{~min}-3 \mathrm{~h}$ | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | $1 \mathrm{~s}-100 \mathrm{~h}$ | $1 \mathrm{~s}-100 \mathrm{~h}$ | $0.5 \mathrm{~s}-3 \mathrm{~min}$ |
| INPUT CIRCUIT |  |  |  |  |  |
| Control signal | Integrated test key |  | ■ | $\square$ |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | 1 CO contact | 1 CO contact | 2 CO contacts | 2 CO contacts |
| Max. switching capacity | NC: 4000VA (10A / 250V AC) NO: 1250VA (5A / 250V AC) | 2000VA (8A / 250V AC) |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ |  |  | $35 \times 87 \times 65 \mathrm{~mm}$ |  |
| Certificates | CE, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC |


| TYPE DESIGNATION | V2ZM10 | V2ZM10-A | V2ZQ10 | V2ZI10 | V2ZE10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. Screw terminal | 125100 | - | 125150 | 125200 | 125110 |
| Art. No. Push-in terminal | 125600 | - | 125650 | 125210 | 125610 |
| Art. No. Packaging unit 10 pcs. | 125100A | 125101A | 125150A | - | 125110A |
| FUNCTIONALITY | MULTIFUNCTION | MULTIFUNCTION | MULTIFUNCTION | 2-TIME MULTIFUNCTION | ON DELAY |
| E On delay | - | - | - |  | - |
| R Off delay | ■ | - | - |  |  |
| Es On delay with control contact | $\square$ | - |  |  |  |
| Wu Single shot leading edge, voltage-controlled | ■ |  | ■ |  |  |
| EWu ON delay single shot leading edge, voltage-controlled |  | ■ |  |  |  |
| Ws Single shot leading edge with control contact | ■ | ■ |  |  |  |
| Wa Single shot trailing edge with control contact | ■ | $\square$ |  |  |  |
| Bi Flasher pulse first | - | - |  |  |  |
| Bp Flasher pause first | $\square$ | - | ■ |  |  |
| Wt Pulse repetition analysis | ■ | ■ |  |  |  |
| Ec Additive ON Delay | ■ | $\square$ |  |  |  |
| li Asymmetric flasher pulse first |  |  |  | - |  |
| Ip Asymmetric flasher pause first |  |  |  | - |  |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | 12 to 240 V AC/DC | 12 to 240V AC/DC | 24 to 240 V AC/DC | 12 to 240 V AC/DC | 12 to 240 V AC/DC |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges |  |  | 10 |  |  |
| Setting range |  |  | $0.05 \mathrm{~s}-100 \mathrm{~h}$ |  |  |
| INPUT CIRCUIT |  |  |  |  |  |
| Control signal | ■ | - | ■ | ■ |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Anzahl der Schaltkontakte |  |  | 1 CO contact |  |  |
| Max. Schaltleistung |  |  | 2000VA (8A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ |  |  |  |  |
| Certificates | CE, cULus, EAC (Devices with Push-in terminal are not cULus listed) |  |  |  |  |


| TYPE DESIGNATION | V2ZR10 | V2ZA10 | V2ZS20 | V2ZET |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |
| Art. No. Screw terminal | 125120 | 125500 | 125300 | $\begin{aligned} & 125130 \text { ( } 12-240 \mathrm{~V} \text { AC/DC) } \\ & 125132 \text { (50ms 230V AC) } \\ & 125133 \text { ( } 50 \mathrm{~ms} 110 \mathrm{~V} \mathrm{AC} \text { ) } \end{aligned}$ |
| Art. No. Push-in terminal | 125620 | 125510 | 125310 | - |
| Art. No. Packaging unit 10 pcs. | 125120A | - | - | - |
| FUNCTIONALITY | OFF DELAY | MULTIFUNKTION | STAR DELTA | 2-WIRE ON DELAY |
| E On delay |  | ■ |  |  |
| ET On delay, two wire connected |  |  |  | $\square$ |
| R Off delay | ■ |  |  |  |
| A Off delay without auxiliary voltage |  | ■ |  |  |
| nWu Maintained single shot leading edge |  | ■ |  |  |
| nWa Maintained single shot trailing edge |  | $\square$ |  |  |
| nWuWa Maintained single shot leading and trailing edge |  | ■ |  |  |
| S Star-delta start-up |  |  | ■ |  |
| POWER SUPPLY CIRCUIT |  |  |  |  |
| Supply voltage | 12 to 240V AC/DC | 12 to 240V AC/DC | 12 to 240V AC/DC | $\begin{gathered} 12 \text { to } 240 \mathrm{~V} \text { AC/DC (125130) } \\ 230 \mathrm{VAC}(125132) \\ 110 \mathrm{~V} \text { AC (125133) } \end{gathered}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ |  |  |  |
| TIME CIRCUITS |  |  |  |  |
| Time ranges | 10 | 4 | 4 | $\begin{gathered} 5(125130) \\ 1(125132,125133) \end{gathered}$ |
| Setting range | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | 0.1 s-3 min | $0.05 \mathrm{~s}-3 \mathrm{~min}$ | $\begin{gathered} 0,05 \mathrm{~s}-1 \mathrm{~h}(125130) \\ 50 \mathrm{~ms}(125132,125133) \end{gathered}$ |
| INPUT CIRCUIT |  |  |  |  |
| Control signal | $\square$ |  |  |  |
| OUTPUT CIRCUIT |  |  |  |  |
| Number of switch contacts | 1 CO contact | 1 CO contact | 2 NO contacts | 1 Thyristor output |
| Max. switching capacity | 2000VA (8A / 250V AC) | 1250VA (5A / 250V AC) | 750VA (3A / 250V AC) | 125VA / 250V AC |
| DESIGN |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ |  |  |  |
| Certificates | CE, cULus, EAC (Devices with Push-in terminal are not cULus listed) |  |  | CE, EAC |


| TYPE DESIGNATION | G2ZM20 | G2ZMF11 | G2ZI20 | G2ZIF20 | G2ZS20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. (with power module) | - | 120100 | - | 120200 | 120300 |
| Art. No. (Zoom voltage) | 120401 | 120103 | 120501 | 120201 | 120301 |
| FUNCTIONALITY | MULTIFUNCTION | MULTIFUNCTION | 2-TIME MULTIFUNCTION | 2-TIME MULTIFUNCTION | STAR-DELTA |
| E On delay | $\square$ | $\square$ |  |  |  |
| R Off delay | $\square$ | $\square$ |  |  |  |
| ER On delay and off delay with control contact |  |  | $\square$ | $\square$ |  |
| Es On delay with control contact | $\square$ | $\square$ |  |  |  |
| Wu Single shot leading edge, voltage-controlled | ■ | $\square$ |  |  |  |
| Ws Single shot leading edge with control contact | $\square$ | ■ |  |  |  |
| Wa Single shot trailing edge with control contact | $\square$ | $\square$ |  |  |  |
| EWu ON delay single shot leading edge, voltage-controlled |  |  | $\square$ | $\square$ |  |
| EWs ON delay single shot leading edge with control contact |  |  | $\square$ | $\square$ |  |
| WsWa Single shot leading and trailing edge with control contact |  |  | $\square$ | $\square$ |  |
| Bi Flasher pulse first | $\square$ | $\square$ |  |  |  |
| Bp Flasher pause first | ■ | ■ |  |  |  |
| li Asymmetric flasher pulse first |  |  | $\square$ | ■ |  |
| Ip Asymmetric flasher pause first |  |  | $\square$ | $\square$ |  |
| S Star-delta start-up |  |  |  |  | ■ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | 12 to 240V AC/DC | 24 to 240V AC/DC or selectable via power modules TR2, SNT2 | 12 to 240V AC/DC | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240V AC/DC or selectable via power modules TR2, SNT2 |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges | 7 | 16 | 7 | 10 | 4 |
| Setting range | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | 0.05 s-30 d | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | $0.05 \mathrm{~s}-10 \mathrm{~h}$ | $0.05 \mathrm{~s}-3 \mathrm{~min}$ |
| INPUT CIRCUIT |  |  |  |  |  |
| Control signal | ■ | ■ | $\square$ | $\square$ |  |
| Remote potentiometer |  | - |  | - |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts | 1 delayed / <br> 1 instantaneous CO contact | 2 CO contacts | 2 CO contacts | 2 CO contacts |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $22.5 \times 90 \times 108 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE, cUlus, EAC |  |  |

[^0]| TYPE DESIGNATION | $\begin{aligned} & \text { K3ZM20 } \\ & \text { K3ZM20P } \end{aligned}$ | K3ZA20 3MIN | K3zı20 | K3ZS20 | R11X | PF-113BE/M (ES12) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 8 \%= \\ & 0 \% \\ & 0=1 \end{aligned}$ | $\begin{aligned} & \mathrm{g}:= \\ & \mathrm{g}= \\ & \dot{y} \equiv \end{aligned}$ |  | $\begin{aligned} & 68= \\ & =8 \\ & 8= \\ & 8= \end{aligned}$ |  |  |
| ORDER INFORMATION |  |  |  |  | ACCESSORIES FOR KAPPA RELAYS |  |
| Art. No. | $\begin{aligned} & 135100 \\ & 135200 \end{aligned}$ | 135400 | 135101 | 135300 | 180055 | 180136 |
| FUNCTIONALITY | MULTIFUNCTION | MULTIFUNCTION | $\begin{aligned} & \text { 2-TIME } \\ & \text { MULTIFUNCTION } \end{aligned}$ | STAR-DELTA | SOCKETS |  |
| E On delay | $\square$ | - |  |  | 11-pols socket for mounting KAPPA relays on DIN-Rail TS 35 |  |
| R Off delay | - |  |  |  |  |  |
| ER On delay and off delay with control contact |  |  | ■ |  |  |  |
| Es On delay with control contact | - |  |  |  |  |  |
| Wu Single shot leading edge, voltage-controlled | - |  |  |  |  |  |
| Ws Single shot leading edge with control contact | ■ |  |  |  |  |  |
| Wa Single shot trailing edge with control contact | ■ |  |  |  |  |  |
| nWu Maintained single shot leading edge |  | - |  |  |  |  |
| nWa Maintained single shot trailing edge |  | - |  |  |  |  |
| EWu ON delay single shot leading edge, voltage-controlled |  |  | ■ |  |  |  |
| EWs ON delay single shot leading edge with control contact |  |  | ■ |  |  |  |
| WsWa Single shot leading and trailing edge with control contact |  |  | ■ |  |  |  |
| nWuWa Maintained single shot leading and trailing edge |  | - |  |  |  |  |
| Bp Flasher pause first | ■ |  |  |  |  |  |
| Ii Asymmetric flasher pulse first |  |  | ■ |  |  |  |
| Ip Asymmetric flasher pause first |  |  | ■ |  |  |  |
| Wt Pulse sequence monitoring |  |  | $\square$ |  |  |  |
| A Off delay without auxiliary voltage |  | - |  |  |  |  |
| S Star-delta start-up |  |  |  | - |  |  |
| SUPPLY CIRCUIT |  |  |  |  |  |  |
| Supply voltage | 12 to 240 V AC/DC | 24 to 240 V AC/DC | 12 to 240V AC/DC | 12 to 240 V AC/DC | Depends on selcted KAPPA relays |  |
| Frequency range | $48-63 \mathrm{~Hz}$ |  |  |  | Depends on selcted KAPPA relays |  |
| TIME CIRCUITS | $48-63 \mathrm{~Hz}$ |  |  |  |  |  |
| Time ranges | 7 | 4 | 7 | 4 |  |  |
| Setting range | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | $0.1 \mathrm{~s}-3 \mathrm{~min}$ | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | $0.05 \mathrm{~s}-3 \mathrm{~min}$ |  |  |
| INPUT CIRCUIT |  |  |  |  |  |  |
| Control signal | (K3ZM20P potential free) |  | ■ |  |  |  |
| OUTPUT CIRCUIT |  |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts |  |  |  |  |  |
| Max. switching capacity | 2000VA (8A / 250V AC) |  |  |  |  |  |
| DESIGN |  |  |  |  |  |  |
| Dimensions ( $w \times h \times d$ ) | $38 \times 51 \times 80 \mathrm{~mm}$ |  |  |  | $38 \times 61,5 \times 26 \mathrm{~mm}$ | $38 \times 75 \times 26 \mathrm{~mm}$ |
| Certificates | CE, EAC |  |  |  | CE, cRUus | CE, cRUus, CSA |



# Function overview monitoring relays 

 If the measured value exceeds the adjusted MAX threshold, the output relay switches into off-position The output relay switches into on-position again, as soon as the measured value falls below the adjusted MIN threshold.


If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MAX threshold.

If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value falls below the adjusted MAX threshold.

## 2MIN MINIMUM MONITORING



If the measured value falls below the adjusted MAX threshold, the output relay Rel1 switches into off-position. If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value exceeds the according adjusted threshold (MAX or MIN).

## 2MAX MAXIMUM MONITORING



If the measured value exceeds the adjusted MIN threshold, the output relay Rel2 switches into off-position. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value falls below the according adjusted threshold (MAX or MIN).

| MM | MINIMUM AND MAXIMUM MONITORING (MIN/MAX) |
| :--- | :--- |



If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relay Rel2 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into offposition.
The output relay Rel1 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold.

## TEMP $\quad$ TEMPERATURE MONITORING



If the supply voltage $U$ is applied and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relay R switches into on-position. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$, the output relay switches into off-position. The output relay switches into on-position again after the cumulative resistance falls below $1.6 \mathrm{k} \Omega$.

## PUMP UP



## PUMP DOWN PUMP DOWN



Connection of the probe rods E1, E2 and E3. When the air-fluid level falls below the minimum probe E2 the set interval of tripping delay begins. After the expiration of the interval, the output relay R switches into on-position. When the air-fluid level again rises above the maximum probe E1, the set interval of turn-off delay begins. After the expiration of the interval the output relay switches into off-position.

## LATCH



Connection of the probe rods E1, E2 and E3. When the maximum probe E1 gets moistened the set interval of tripping delay begins. After the expiration of the interval the output relay R switches into on-position. When the airfluid level falls below the minimum probe E2, the set interval of turn-off delay begins. After the expiration of the interval, the output relay switches into off-position.


\section*{| ASYM | ASYMMETRY MONITORING |
| :--- | :--- |}



If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the output relay switches into off-position. If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire ( $Y$-voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the output relay switches into off-position.

## ON DELAY

## ON DELAY



The output relay switches on if the monitored value is within the selected range during the defined time period.
DELAY

\section*{| START | START-UP SUPPRESSION |
| :--- | :--- |}



The output relay switches on when the supply voltage is applied. Changes to measured variables have no impact on the setting of the output relay during start up suppression.

```
I = 0
```


## RECOGNITION OF DISCONNECTED CONSUMERS



When the current flow between i and k is interrupted the output relay switches into off-position. When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up supression.

| TYPE DESIGNATION | K3PF400VSY02 | K3YM400VSY20 | K3IM5AACL20 | K3UM230VAC02 | K3UM24VDC02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. | 1380301 | 1380402 | 1380202 | 1380106 | 1380107 |
| FUNCTIONALITY | 3-phase <br> AC voltage monitoring | 3- and 1-phase AC voltage monitoring | 1-phase AC current monitoring | 1-phase AC voltage monitoring | 1-phase AC voltage monitoring |
| O ... Over |  |  | $\square$ |  |  |
| U ... Under |  | ■ | - | $\square$ | $\square$ |
| W ... Window |  | ■ | - | $\square$ | $\square$ |
| SEQ ... Phase sequence | ■ | $\square$ |  |  |  |
| Phase failure | - |  |  |  |  |
| ASYM ... Asymmetry | $\square$ | - |  |  |  |
| +LATCH ... Error memory |  |  | - |  |  |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | 80 to $130 \%$ of $U_{N}$ | 10 to $100 \%$ of $U_{N}$ | 80 to $120 \%$ of $U_{N}$ | 80 to $130 \%$ of $U_{N}$ |
| Minimum | - | 70 to $120 \%$ of $U_{N}$ | 5 to $95 \%$ of $\mathrm{U}_{\mathrm{N}}$ | 70 to $110 \%$ of $U_{N}$ | 75 to $125 \%$ of $U_{N}$ |
| Asymmetry | 5 to 30\%, OFF | 5 to 30\%, OFF | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3(N)~ AC Sinus | 3(N)~ AC Sinus | Current AC Sinus | Voltage AC AC Sinus | Voltage AC AC Sinus |
| Measuring input | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ | 5A AC | $U_{\text {N }}=230 \mathrm{~V} \mathrm{AC}$ | $\mathrm{U}_{\mathrm{N}}=24 \mathrm{~V}$ DC |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage 3(N) ~ 400/230V AC $-30 \%$ to $+30 \%$ | = Measuring voltage 3(N) ~ 400/230V AC $-30 \%$ to $+30 \%$ | $\begin{gathered} 230 \mathrm{~V} \text { AC } \\ -15 \% \text { to }+10 \% \end{gathered}$ | = Measuring voltage <br> 3(N) ~ 400/230V AC $-30 \%$ to $+20 \%$ | $\begin{gathered} =\text { Measuring voltage } \\ 24 \mathrm{~V} \text { DC } \\ -25 \% \text { to }+30 \% \end{gathered}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | - |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | - | - | 0-10 s | - | - |
| Tripping delay (DELAY) | fixed, approx. 100 ms | $0.1-10 \mathrm{~s}$ | $0.1-10$ s | - | - |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts |  |  |  |  |
| Max. switching capacity | 1250VA (5A / 250V AC) |  |  |  |  |
| design |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $38 \times 51 \times 80 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE, EAC |  |  |


| TYPE DESIGNATION | E1IM10AACL10 230VAC | E3IM10AL20 230V AC | E3IF500MAAC20 | E3YF400VE20 0.85 | E3YF400VT02 0.85 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | 1340200 | 1341200 | 1341201 | 1341404 | 1341402 |
| FUNCTIONALITY | 1-phase AC current monitoring | 1-phase AC/DC current monitoring | 1-phase AC current monitoring | 3-phase AC voltage monitoring | 3-phase AC voltage monitoring |
| O ... Over | ■ | - |  |  |  |
| U ... Under | ■ | ■ | ■ | ■ | ■ |
| W ... Window | ■ | - |  |  |  |
| Test function |  |  |  |  | ■ |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | 10 to $100 \%$ of $I_{N}$ | 10 to $100 \%$ of $I_{N}$ | - | - | - |
| Minimum | 5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 50 mA to 500 mA | fixed, 195.5V (0.85) | fixed, 195.5V (0.85) |
| Asymmetry | - | - | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | Current AC Sinus | Current AC/DC AC Sinus | Current AC Sinus | 3(N)~ AC Sinus | 3(N)~ AC Sinus |
| Measuring input | 10A AC | 100mA / 1A / 10A AC/DC | 500 mA | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $\begin{gathered} 230 \mathrm{~V} \text { AC } \\ -15 \% \text { to }+15 \% \end{gathered}$ | 230 V AC | 230 V AC | = Measuring voltage 3(N) ~ 400/230V AC $-30 \%$ to $+30 \%$ | = Measuring voltage 3(N) ~ 400/230V AC $-30 \%$ to $+30 \%$ |
| Frequency range | $48-63 \mathrm{~Hz}$ |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | - | 0-10s | 0-20 min | - | - |
| Tripping delay (DELAY) | 0,1-10s | 0,1-10s | 0-20min | - | fixed, approx. 200 ms |
| ON DELAY | - | - | - | fixed, 1 min | - |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | 2 CO contact | 2 CO contact | 2 CO contact | 2 CO contact |
| Max. switching capacity | 1250VA (5A / 250V AC) |
| DESIGN |  |  |  |  |  |
| Dimensions ( $w \times h \times \mathrm{d}$ ) | $17,5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |  |  |  |
| Certificates | CE, cULus, EAC | CE, EAC | CE, EAC | CE, c | S, EAC |


| TYPE DESIGNATION | E1PF400VSY01 | E1PF400VS01 | E1PF480Y/277VSY01 | E1YF400V01 | E3YF400V02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | 1340300 | - | 1340306 | $\begin{aligned} & 1340402(0.85) \\ & 1340410(0.70) \end{aligned}$ | 1341401 |
| Art. No. package 10 pcs. | 1340300A | 1340301A | - | 1340402A (0.85) | - |
| FUNCTIONALITY | 3-phase AC voltage monitoring |  |  |  |  |
| U ... Under |  |  |  | ■ | ■ |
| W ... Window |  |  |  |  |  |
| SEQ ... Phase sequence | - | $\square$ | $\square$ |  |  |
| Phase failure | - | - | ■ |  |  |
| ASYM ... Asymmetry | $\square$ |  | ■ |  |  |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Minimum | - | - | - | fixed, 195.5V (0.85) fixed, 161V (0.70) | fixed, 195.5V |
| Asymmetry | 5 to $25 \%$, OFF | 5 to $25 \%$, OFF | 5 to $25 \%$, OFF | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3(N)~ AC Sinus | 3(N)~ AC Sinus | 3~ <br> AC Sinus | 3(N)~ AC Sinus | 3(N)~ AC Sinus |
| Measuring input | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $U_{\mathrm{N}}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $\begin{gathered} U_{\mathrm{N}}=208 / 120 \mathrm{~V} \\ \text { to } 480 / 277 \mathrm{~V} \text { AC } \end{gathered}$ | $\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $=$ Measuring voltage $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \mathrm{AC}$ $-30 \%$ to $+30 \%$ | $=$ Measuring voltage 3(N) ~ 400/230V AC $-30 \%$ to $+30 \%$ | $\begin{gathered} =\text { Measuring voltage } \\ 3 \sim 208 / 120 \mathrm{~V} \text { to } \\ 480 / 277 \mathrm{VC} \\ -10 \% \text { to }+10 \% \end{gathered}$ | = Measuring voltage 3(N)~ 400/230V AC $-30 \%$ to $+30 \%$ | $=$ Measuring voltage $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \mathrm{AC}$ $-30 \%$ to $+30 \%$ |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Tripping delay (DELAY) | fixed, approx. 100 ms | fixed, approx. 100 ms | fixed, approx. 100 ms | fixed, approx. 200 ms | fixed, approx. 200 ms |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | 1 CO contact | 1 CO contact | 1 CO contact | 2 CO contacts |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates | CE, EAC | CE, EAC | CE, cULus, EAC | CE, EAC | CE, cULus, EAC |


| TYPE DESIGNATION | E1YM400VS10 | E1YM480/277VS10 | E3YM230VS20 | E1UM230V01 | E3LM10 230VAC |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | 1340405 | 1340409 | 1341406 | 1340101 | 1341500 |
| FUNCTIONALITY | 3- and 1-phase AC voltage monitoring | 3-phase AC voltage monitoring | 3- and 1-phase AC voltage monitoring | 1-phase AC/DC voltage monitoring | Level monitoring of conductive liquids |
| O ... Over |  |  |  |  |  |
| U ... Under | $\square$ | $\square$ | $\square$ | ■ |  |
| W ... Window | ■ | $\square$ | ■ | - |  |
| SEQ ... Phase sequence | $\square$ | $\square$ | $\square$ |  |  |
| Phase failure |  |  | $\square$ |  |  |
| Pump up |  |  |  |  | $\square$ |
| Pump down |  |  |  |  | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | 80 to $130 \%$ of $U_{N}$ | 75 to $110 \%$ of $U_{N}$ | 80 to $130 \%$ of $U_{N}$ | 80 to $120 \%$ of $U_{N}$ | - |
| Minimum | 70 to $120 \%$ of $U_{N}$ | 65 to $100 \%$ of $U_{N}$ | 70 to $120 \%$ of $U_{N}$ | 75 to $115 \%$ of $U_{N}$ | - |
| Asymmetry | 5 to $25 \%$, OFF | - | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3(N)~ AC Sinus | 3~ AC Sinus | 3(N)~ AC Sinus | Voltage AC/DC AC Sinus | Liquid level via conductive probes |
| Measuring input | $U_{\mathrm{N}}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $U_{\mathrm{N}}=480 / 277 \mathrm{~V} \mathrm{AC}$ | $U_{N}=230 / 132 \mathrm{~V} \mathrm{AC}$ | 24 V AC/DC; 230 V AC | 0.25 to 100k $\Omega$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage <br> 3(N) ~ 400/230V AC <br> $-30 \%$ to $+30 \%$ | $\begin{gathered} =\text { Measuring voltage } \\ 3 \sim 480 / 277 \mathrm{~V} \text { AC } \\ -35 \% \text { to }+10 \% \end{gathered}$ | = Measuring voltage 3(N)~ 400/230V AC $-30 \%$ to $+30 \%$ | = Measuring voltage 24V AC/DC; 230V AC $-25 \%$ to $+20 \%$ | $\begin{gathered} 230 \mathrm{~V} \text { AC } \\ -15 \% \text { to }+10 \% \end{gathered}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ or DC | $48-63 \mathrm{~Hz}$ |
| TIME CIRCUITS |  |  |  |  |  |
| Tripping delay (DELAY) | $0.1-10$ s | $0.1-10$ s | $0-30 \mathrm{~s}$ | - | 0.5-10 s |
| OFF DELAY | - | - | - | - | $0.5-10 \mathrm{~s}$ |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | 1 CO contact | 2 CO contacts | 1 CO contact | 1 CO contact |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates | CE, EAC | CE, cULus, EAC | CE, EAC | CE, cULus, EAC | CE, cULus, EAC |


| TYPE DESIGNATION | V2PF480Y/277VSY01 | V2PM400Y/230VS10 | V2UM230V10 | V2UF230V10 | V4PF480Y/277VSYTK02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | दहध दह <br> 2 |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. screw terminal | 2100000 | 2100500 | 2100300 | 2100600 | 2104200 |
| Art. No. push-in terminal | 2100010 | 2100510 | 2100310 | - | 2104210 |
| Art. No. package 10 pcs. | 2100000A | - | - | - | - |
| FUNCTIONALITY | 3- phase AC voltage monitoring | 3- phase AC voltage monitoring | 1- phase AC/DC voltage monitoring | 1- phase undervoltage voltage drop detector | 3- phase AC voltage monitoring |
| O ... Over |  |  |  |  |  |
| U ... Under |  | - | - | $\square$ |  |
| W ... Window |  | - | - |  |  |
| SEQ ... Phase sequence | ■ | - |  |  | ■ |
| Phase failure | ■ | - |  |  | - |
| ASYM ... Asymmetrie | - |  |  |  | $\square$ |
| Voltage interruptions (fast detection) |  |  |  | $\square$ |  |
| Temperature monitoring (PTC) |  |  |  |  | ■ |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | 75 to $130 \%$ of $U_{N}$ | 80 to $115 \%$ of $U_{N}$ | - | - |
| Minimum | - | 70 to $125 \%$ of $U_{N}$ | 75 to $110 \%$ of $U_{N}$ | 165 V AC | - |
| Asymmetry | 5 to $25 \%$, OFF | - | - | - | 5 to $25 \%$, OFF |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable |  |  | Voltage AC/DC AC Sinus | Voltage AC | Temperature, Voltage 3~ AC Sinus |
| Measuring input | $\begin{aligned} & U_{\mathrm{N}}=208 / 120 \mathrm{~V} \\ & \text { to } 480 / 277 \mathrm{~V} \text { AC } \end{aligned}$ | $U_{N}=400 / 230 \mathrm{VAC}$ | 24V AC/DC; 230V AC | $\mathrm{U}_{\mathrm{N}}=180$ to 230 VAC | $\begin{aligned} & U_{\mathrm{N}}=208 / 120 \mathrm{~V} \\ & \text { to } 480 / 277 \mathrm{~V} \mathrm{AC} \end{aligned}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $\begin{gathered} \text { = Measuring voltage } \\ 3 \sim 208 / 120 \mathrm{~V} \\ \text { to } 480 / 277 \mathrm{VAC} \\ -10 \% \text { to }+10 \% \end{gathered}$ | $=$ Measuring voltage 3(N) ~ 400/230V AC $-35 \%$ to $+35 \%$ | $\begin{aligned} & \text { = Measuring voltage } \\ & \text { 24V AC/DC; } 230 \mathrm{~V} \text { AC } \\ & 24 \mathrm{~V}:-30 \% \text { to }+30 \% \\ & 230 \mathrm{~V}:-30 \% \text { to }+20 \% \end{aligned}$ | = Measuring voltage 230 V AC | $\begin{gathered} =\text { Measuring voltage } \\ 3 \sim 208 / 120 \mathrm{~V} \\ \text { to } 480 / 277 \mathrm{VAC} \\ -10 \% \text { to }+10 \% \end{gathered}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ or DC | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ |
| TIME CIRCUITS |  |  |  |  |  |
| ON DELAY | approx. 400 ms | approx. 200 ms | approx. 300 ms | 0.5-10 s | approx. 500 ms |
| Tripping delay (DELAY) | < 250 ms | $0.1-10 \mathrm{~s}$ | $0.1-10$ s | - | approx. 250 ms |
| Response time short voltage interruptions | - | - | - | $10-40 \mathrm{~ms}$ | - |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | 1 CO contact | 1 CO contact | 1 CO contact | 2 CO contacts |
| Max. switching capacity |  |  | 2000VA (8A / 250V AC) |  |  |
| design |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ |
| Certificates | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, EAC | CE, cULus, EAC |
| Devices with Push-in terminal are not cULus listed |  |  |  |  |  |


| TYPE DESIGNATION | V2TF01 | V2IM10AL10 | V4IM100AL20 <br> V4IM35AL20 | V4IA100A | V4LM4S30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. screw terminal | 2100100 | 2100400 | $\begin{aligned} & 2104401(100 A) \\ & 2104402 \text { (35A) } \end{aligned}$ | 2104420 | 2104500 |
| Art. No. push-in terminal | 2100110 | 2100410 | 2104410 (100A) | - | - |
| FUNCTIONALITY |  |  |  |  |  |
| O ... Over |  | ■ | ■ |  | 10 functions selectable via rotary switch - function overview refer to page 7 |
| U ... Under |  | $\square$ | $\square$ |  |  |
| W ... Window |  | $\square$ | $\square$ |  |  |
| 2MAX ... Maximum monitoring |  |  | $\square$ |  |  |
| MM ... Min. and max. monitoring |  |  | $\square$ |  |  |
| +LATCH ... Error memory |  |  | $\square$ |  |  |
| Temperature monitoring (PTC) | - |  |  |  |  |
| Short circuit monitoring (PTC) | $\square$ |  |  |  |  |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | $\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$ | 10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 10 to $100 \%$ of $I_{\text {N }}$ | - | Sensitivity: $10 \mathrm{k} \Omega-500 \mathrm{k} \Omega$ Vsense: 20, 40, 60, 80, 100\% |
| Minimum | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | 5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$ |  | Sensitivity: $250 \Omega-12.5 \mathrm{k} \Omega$ <br> Vsense: 20, 40, 60, 80, 100\% |
| Zero...Zero point | (swors | - | - | $0 \%, 25 \%, 50 \%$ and $75 \%$ of nominal value | - |
| Zero Fine...Fine setting zero point | - | - | - | $0-25 \%$ of nominal value $25 \%, 50 \%, 75 \%$ and $100 \%$ of nominal value | - |
| Span...Measuring span | - | - | - |  | $\square$ |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | Temperature | Current AC/DC AC Sinus | Current AC/DC AC Sinus | Current AC/DC AC Sinus | Liquid level with conductive probes (type SK1, SK5) |
| Measuring input | - | 10A AC/DC | V4IM100AL20: 100A AC/DC Built-in current transformer V4IM35AL20: 35A AC/DC Built-in current transformer | 100A AC/DC Built-in current transformer | $\begin{aligned} & \text { Low (L): } 250 \Omega-12.5 \mathrm{k} \Omega \\ & \text { High (H): } 10 \mathrm{k} \Omega-500 \mathrm{k} \Omega \end{aligned}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $\begin{gathered} 24-240 \mathrm{~V} \text { AC/DC } \\ -15 \% \text { to }+10 \% \end{gathered}$ | $\begin{gathered} \text { AC: } 110-240 \mathrm{~V} \\ \text { DC: } 24-240 \mathrm{~V} \\ \text { AC: }-15 \% \text { to }+15 \% \\ \text { DC: }-30 \% \text { to }+30 \% \end{gathered}$ | $\begin{aligned} & 24-240 \mathrm{~V} \text { AC/DC } \\ & \text { AC: }-15 \% \text { to }+10 \% \\ & \text { DC: }-30 \% \text { to }+30 \% \end{aligned}$ | AC: $48-240 \mathrm{~V}$ DC: $24-240 \mathrm{~V}$ AC: $-10 \%$ to $+10 \%$ DC: $-15 \%$ to $+20 \%$ | 24-240V AC/DC <br> AC: $-10 \%$ to $+10 \%$ <br> DC: $-25 \%$ to $+25 \%$ |
| Frequency range | 16.6 to 400 Hz or DC |
| TIME CIRCUITS |  |  |  |  |  |
| ON DELAY | approx. 50 ms | approx. 300 ms | approx. 300 ms | - | - |
| Start-up surpression time (START) | - | - | 0-10 s | - | - |
| Tripping delay (DELAY) | - | $0.1-10$ s | $0.1-10 \mathrm{~s}$ | - | - |
| Delay (Measuring Filter) | - | - | - | - | 1-10s |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Analog output | - | - | - | $\begin{gathered} 0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} \\ 10 \mathrm{~mA} \pm 10 \mathrm{~mA} / 12 \mathrm{~mA} \\ \pm 8 \mathrm{~mA} \\ \text { (Burden: max. } 300 \Omega \text { ) } \\ 0 \ldots . .10 \mathrm{~V} \\ 5 \mathrm{~V} \pm 5 \mathrm{~V} \\ \text { (Burden: max. 1,5k } \Omega \text { ) } \end{gathered}$ | - |
| Number of switch contacts | 1 NO contact | 1 CO contact | - | - - | 3 NO contacts |
| Max. switching capacity | 2000VA (8A/ 250V AC) |  |  | - | 1250VA (5A / 250V AC) |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ |
| Certificates | CE, cULus, EAC |  |  | CE, EAC | CE, cULus, EAC |


| TYPE DESIGNATION | G2PF400VS02 | G2PM400VSY10 <br> G2PM400VSY20 | $\begin{aligned} & \text { G2TF01 } \\ & \text { G2TF02 } \end{aligned}$ | G2TFKN02 | G2LM20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. 1 CO contact | - | 2390500 | $\begin{gathered} 2390102 \text { (230V AC) } \\ 2390103 \end{gathered}$ | - | - |
| Art. No. 2 CO contacts | 2390000 | $\begin{gathered} 2390504 \\ 2390505 \text { (24-240V AC/DC) } \end{gathered}$ | $\begin{gathered} 2390100 \\ 2390104 \text { (230V AC) } \\ 2390111 \text { (24-240V AC/DC) } \end{gathered}$ | $\begin{gathered} 2390101 \\ 2390110 \text { (24-240V AC/DC) } \end{gathered}$ | $\begin{aligned} & 2390201 \text { (24V AC) } \\ & 2390202 \text { (110V AC) } \\ & 2390200 \text { (230V AC) } \end{aligned}$ |
| FUNCTIONALITY | 3-phase AC voltage monitoring | 3 - phase AC voltage monitoring | Temperature monitoring (PTC) | Temperature monitoring (PTC) | Level monitoring of conductive liquids |
| U ... Under |  | $\square$ |  |  |  |
| W ... Window |  | ■ |  |  |  |
| SEQ ... Phase sequence |  | ■ |  |  |  |
| Phase failure | ■ | - |  |  |  |
| ASYM ... Asymmetry | ■ | - |  |  |  |
| Temperature monitoring (PTC) |  |  | - | $\square$ |  |
| Short circuit monitoring (PTC) |  |  |  | - |  |
| Zero-voltage latch (PTC) |  |  |  | $\square$ |  |
| Test function (PTC) |  |  | - | - |  |
| Pump up |  |  |  |  | $\square$ |
| Pump down |  |  |  |  | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | -20 to $+30 \%$ of $U_{N}$ | $\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$ | $\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$ | - |
| Minimum | - | -30 to $+20 \%$ of $U_{N}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | - |
| Asymmetry | fixed, typ. 30\% | 5 to $25 \%$, OFF | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3(N)~ AC Sinus | 3(N)~ AC Sinus | Temperature | Temperature | Liquid level via conductive probes |
| Measuring input | $U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$ | $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$ | - | - | 0.25 to 100k |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage <br> 3(N) ~ 342V to 457V AC | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC; 230V fixed or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | $\begin{aligned} & 24 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{VAC} \\ & 230 \mathrm{VAC} \end{aligned}$ |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | fixed, max. 500ms | - | - | - | - |
| Tripping delay (DELAY) | fixed, max. 350ms | $0.1-10 \mathrm{~s}$ | - | - | $0.5-10 \mathrm{~s}$ |
| OFF DELAY | - | - | - | - | $0.5-10 \mathrm{~s}$ |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts | 1 or 2 CO contacts | 1 or 2 CO contacts | 2 CO contacts | 2 CO contacts |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $22.5 \times 90 \times 108 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE, cULus, EAC |  |  |


| TYPE DESIGNATION | G2PU690VS20 | G2UM300VL20 | G2IM5AL10 <br> G2IM5AL20 | G2IM10AL10 G2IM10AL20 | G2FW400VL20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. 1 CO contact | - | - | 2390401 | 2390400 | - |
| Art. No. 2 CO contacts | 2390507 | $\begin{gathered} 2390303 \\ 2390304 \text { (24-240V AC/DC) } \end{gathered}$ | $\begin{gathered} 2390405 \\ 2390411 \text { (24-240V AC/DC) } \end{gathered}$ | $\begin{gathered} 2390406 \\ 2390410 \text { (24-240V AC/DC) } \end{gathered}$ | 2390900 |
| FUNCTIONALITY | 3- phase AC voltage monitoring | 1- phase AC/DC voltage monitoring | 1- phase AC/DC current monitoring | 1- phase AC/DC current monitoring | Frequency monitoring |
| O ... Over |  | ■ | - | $\square$ |  |
| U ... Under | - | $\square$ | ■ | - |  |
| W ... Window |  | - | ■ | - | $\square$ |
| SEQ ... Phase sequence | ■ |  |  |  |  |
| Phase failure | - |  |  |  |  |
| ASYM ... Asymmetry | - |  |  |  |  |
| +LATCH ... Error memory |  | $\square$ | - | ■ | $\square$ |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | 10 to $100 \%$ of $U_{N}$ | 10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{N}}=50 \mathrm{~Hz}: 49 \text { to } 60 \mathrm{~Hz} \\ & \mathrm{~F}_{\mathrm{N}}=60 \mathrm{~Hz}: 59 \text { to } 70 \mathrm{~Hz} \end{aligned}$ |
| Minimum | 180 to 690V | 5 to $95 \%$ of $\mathrm{U}_{\mathrm{N}}$ | 5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$ | 5 to $95 \%$ of ${ }_{N}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{N}}=50 \mathrm{~Hz}: 40 \text { to } 51 \mathrm{~Hz} \\ & \mathrm{~F}_{\mathrm{N}}=6 \mathrm{~Hz}: 50 \text { to } 61 \mathrm{~Hz} \end{aligned}$ |
| Asymmetry | fixed, 25\% | - | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3~ <br> AC Sinus | Voltage AC/DC AC Sinus | Current AC/DC AC Sinus | Current AC/DC AC Sinus | Frequency, 1-phase |
| Measuring input | $U_{N}=208 \mathrm{~V}$ bis 690 V | $30 / 60$ / 300V AC/DC | $20 \mathrm{~mA} / 1 \mathrm{~A} / 5 \mathrm{~A}$ AC/DC | 100mA / 1A / 10A AC/DC | 110-400V AC |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage 3~ 177V to 794V | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240V AC/DC |
| TIME CIRCUITS |  |  |  |  |  |
| ON DELAY | - | - | - | - | 0-10 s |
| Start-up surpression time (START) | - | 0-10 s | 0-10 s | 0-10 s | - |
| Tripping delay (DELAY) | $0.1-10 \mathrm{~s}$ | $0.1-10 \mathrm{~s}$ | $0.1-10$ s | $0.1-10 \mathrm{~s}$ | $0.1-10$ s |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts | 2 CO contacts | 1 or 2 CO contacts | 1 or 2 CO contacts | 2 CO contacts |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $w \times h \times d$ ) |  |  | $22.5 \times 90 \times 108 \mathrm{~mm}$ |  |  |
| Certificates | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, EAC |

Please refer to the chapter accessories for detailed information and ordering data of power modules TR2, TR3 and SNT2

## Power monitors

## Monitoring of electronic motors



TELE power monitoring systems offer significant advantages, particularly in situations in which monitoring tasks are usually carried out by sensors:

- No problems due to contamination and any decalibration of the sensors
- No maintenance and cleaning costs
- Easy to use, even in charged air or volatile substances
- Savings in terms of cabling
- No use of explosion-proof barriers necessary
- Reduction in error sources
- Simple retrofitting

Current monitoring relays
Pure current measurements in the supply to motors can only be used in an extremely restricted capacity to monitor loads. This is due to three essential factors:

1) In alternating current circuits, the measured current is apparent current. This total current comprises the sum of reactive and active current components. However, when generating mechanical power it is the active current that is exclusively decisive. The reactive current merely causes losses and does not contribute to the shaft power delivered.
2) In an underload range the current does not reduce in a linear manner with the load but instead remains relatively high due to the necessary magnetisation current. Therefore, no relevant correlation exists between current and load.
3) The current is dependent on the supply voltage. An undervoltage condition with a constant load can result in an increased current draw. This therefore eliminates monitoring the pure active current too.

Thus, monitoring pure current is only applicable in extreme operating conditions, such as a drive blockage, because the current rises dramatically in such cases.

Power monitoring systems with power factor measurement $(\cos \varphi)$ The power factor $\cos \varphi$ is the cosine of the phase shift angle between the current drawn and the voltage applied. In electrical motors this is dependent on the loading and theoretically equals 1 in an ideal case. However, due to induction it effectively lies within a range of 0.85 to 0.95 with a nominal load.

In an underload range, the $\cos \varphi$ monitor is extremely significant because the proportion of losses at a lower load increases dramatically and results in a $\cos \varphi$ of up to $<0.5$ in an idle state. This is not applicable around the zero point and in an overload range because load changes only result in minimal changes to the phase shift angle $\varphi$.

| TYPE DESIGNATION | G2CM400V10AL20 | G2BA400V12A 4-20MA <br> G2BA400V12A 0-10V | G2BM400V12AL10 G2BM400V12AFL10 | G4CM690V16ATL20 | G4BM480V12ADTL20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Art. No. | 2390602 | $\begin{aligned} & 2390705 \\ & 2390708 \end{aligned}$ | $\begin{aligned} & 2390700 \\ & 2390702 \end{aligned}$ | 2394600 | 2394706 |
| FUNCTIONALITY | $\cos \varphi$ power factor in 1- or 3-phase mains | Active power transducer in 1-or 3-phase mains | True power monitoring in 1- or 3-phase mains | $\cos \varphi$ power factor <br> in 1- or 3-phase mains | True power monitoring in 1- or 3-phase mains |
| O ... Overload monitoring | $\square$ |  | $\square$ |  | $\square$ |
| U ... Underload monitoring | ■ |  | ■ |  | - |
| W ... Window | ■ |  |  |  | $\square$ |
| 2MIN ... Minimum monitoring |  |  |  | - | $\square$ |
| 2MAX ... Maximum monitoring |  |  |  | - | - |
| MIN/MAX ... Minimum- and maximum monitoring |  |  |  | ■ | - |
| +LATCH ... Error memory | ■ |  | ■ | ■ | ■ |
| I = 0 DETECTION ... Recognition of disconnected consumers |  |  | - | - | ■ |
| Temp ... Temperature monitoring of the motor winding |  |  |  | ■ | ■ |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Zero ... Zero point | - | $0 \%, 25 \%, 50 \%$ and $75 \%$ of nominal value | - | - | - |
| Zero Fine ... Fine setting zero point | - | 0-25\% of nominal value | - | - | - |
| Span ... Measuring span | - | $100 \%, 75 \%, 50 \%$ and $25 \%$ of nominal value | - | - | - ${ }^{-}$ |
| Threshold P / P1 | $\cos \varphi$ Max: 0.2-1.0 | - | 5 to $120 \%$ of $\mathrm{P}_{\mathrm{N}}$ | $\cos \varphi$ 1: 0,3-1 (inductive) 1-0,3 (capacitive) | 2.5kW: 120W to 2490W <br> 10kW: 480W to 9960W |
| Threshold P2 | $\cos \varphi$ Min: $0.1-0.99$ | - | - | $\cos 1: 0,3-1$ (inductive) 1-0,3 (capacitive) | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | Power factor $(\cos \varphi)$, 1 - or 3-phase loads AC Sinus | True power, 1- or 3-phase loads AC Sinus | True power, 1- or 3-phase loads AC Sinus | Power factor ( $\cos \varphi$ ), 1 - or 3-phase loads AC Sinus | True power, 1- or 3-phase loads AC Sinus |
| Measuring range | 0.1 to 1 | $\begin{gathered} 0.75 \mathrm{~kW} \cdot 1.5 \mathrm{~kW} \cdot 3 \mathrm{~kW} \cdot \\ 6 \mathrm{~kW} \end{gathered}$ | $0.5 \mathrm{~kW} \cdot 1 \mathrm{~kW} \cdot 2 \mathrm{~kW} \cdot 4 \mathrm{~kW}$ | 0.3 to 1 | $2.5 \mathrm{~kW} \cdot 10 \mathrm{~kW}$ |
| Measuring input voltage | 40 to 415 V AC <br> (single-phase) <br> 40/23 to 415/240V (3 ~) | $\begin{gathered} 0 \text { to } 480 \mathrm{~V} \text { AC } \\ \text { (single-phase) } \\ 0 \text { to } 480 / 277 \mathrm{~V}(3 \sim) \end{gathered}$ | 0 to 230 V AC (single-phase) 0 to 415/240V (3 ~) | $\begin{gathered} 85 \text { to 690V AC } \\ \text { (single-phase) } \\ 85 \text { to } 690 / 400 \mathrm{~V}(3 \sim) \end{gathered}$ | 0 to 480 V AC (single-phase) 0 to 480/277V (3 ~) |
| Overload capacity voltage | $\begin{gathered} 500 \mathrm{~V} \text { AC (single-phase) } \\ 500 / 289 \mathrm{~V}(3 \sim) \end{gathered}$ | $\begin{gathered} \text { 550V AC (single-phase) } \\ 550 / 318 \mathrm{~V}(3 \sim) \end{gathered}$ | 300 V AC (single-phase) 500/289V (3 ~) | 796 V AC (single-phase) 796/460V (3 ~) | 550 V AC (single-phase) 550/318V (3 ~) |
| Measuring input current | 0.5 to 10A | 0 to 6 A ( 0.6 and 1.2 kW ) 0 to 12A (2.4 and 4.8kW) | 0 to 6A ( 0.5 and 1 kW ) 0 to 12A (2 and 4kW) | 1 to 16A | 0.15 to 6 A ( 2.5 kW ) 0.3 to 12A (10kW) |
| Overload capacity current | 11A permanent | 12A permanent | 12A permanent | 20A permanent | 12A permanent |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | Selectable via power module TR2 | 24-240V DC; 48-240V AC | Selectable via power module TR2 | Selectable via power module TR3 | 24-240V AC/DC |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | 1-100 s | - | $\begin{aligned} & 1-100 \mathrm{~s}(\mathrm{AL} 10) \\ & 0.1-2 \mathrm{~s} \text { (AFL10) } \end{aligned}$ | 3-180s | 0-100 s |
| Tripping delay (DELAY) | $0.1-40$ s | - | $\begin{aligned} & 0.1-50 \mathrm{~s}(\mathrm{AL} 10) \\ & 0.1-2 \mathrm{~s} \text { (AFL10) } \end{aligned}$ | $1-50 \mathrm{~s}$ | 0.1-50 s |
| INPUT CIRCUIT |  |  |  |  |  |
| Control input | - | - | Y1-Y2 (Latch) | Y1-Y2 (Latch) | Y1-Y2 (Latch) |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Analog output | - | $\begin{gathered} \text { 4-20mA } \\ \text { (Burden: max. } 500 \Omega \text { ) } \\ 0-10 \mathrm{~V} \\ \text { (Burden: } \min .3 \mathrm{k} \Omega \text { ) } \end{gathered}$ | - | - | - |
| Number of switch contacts | 2 CO contacts | - - | 1 CO contact | 2 CO contacts | 2 CO contacts |
| Max. switching capacity | 1250VA (5A / 250V AC) | - | 1250VA (5A / 250V AC) | 1250VA (5A / 250V AC) | 1250VA (5A / 250V AC) |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $45 \times 90 \times 108 \mathrm{~mm}$ | $45 \times 90 \times 125 \mathrm{~mm}$ |
| Certificates | CE, cULus, EAC | CE, EAC | CE, cULus, EAC | CE, cULus, EAC | CE, cULus, EAC |

Please refer to the chapter accessories for detailed information and ordering data of power modules TR2, TR3 and SNT2


| S9XM300A1000VM | S9XM300A100VM | S1XMmM | S1XMmHM | S6IA50A / S6IA50AM | S9IA300A / S9IA300AM |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 2800220 | 2800230 | 2800100 | 2800110 | $2800000 / 2800010$ | 2800020 / 2800030 |
|  |  |  |  |  |  |
| ■ | - | - | ■ | - (Art. 2800010) | - (Art. 2800030) |
|  |  | - | - |  |  |
|  |  | $\square$ | - | - (Art. 2800000) | $\square$ (Art. 2800020) |
|  |  | - |  |  |  |
|  |  | - | - |  |  |
| 1-ph Power meter | 1-ph Power meter | 1-ph Analyzer | 1-ph Analyzer | 1-ph CT | 1-ph CT |
|  |  |  |  |  |  |
| 300A | 300A | external CT | external CT | 50A | 300A |
| 400A | 400A | external Hall Sensor | external Hall Sensor | 50A | 300A |
| 800 V | 80 V | (external VT) | (external VT) | - | - |
| 1000V | 100 V | (external VT) | (external VT) | - | - |
|  |  |  |  |  |  |
| ■ | - | ■ (alt. Voltage) | ■ (alt. Voltage) | ■ | ■ |
| ■ | - | ■ (alt. Voltage) | - (alt. Voltage) |  |  |
|  |  | ■ (alt. Voltage) | - (alt. Voltage) |  |  |
|  |  | - (alt. Voltage) | - (alt. Voltage) | ■ (Art. 2800010) | $\square$ (Art. 2800030) |
|  |  | - (alt. Voltage) | - (alt. Voltage) |  |  |
|  |  | - (alt. Voltage) | - (alt. Voltage) |  |  |
| - | - |  |  |  |  |
| ■ | - |  |  |  |  |
| ■ | - |  |  |  |  |
| ■ | - |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\square$ | ■ |  |  |  |  |
|  |  |  |  |  |  |
| ■ | - |  | - |  |  |
|  |  |  | - |  |  |
|  |  |  | - |  |  |
|  |  | - | - |  |  |
|  |  | - | - |  |  |
|  |  |  | - |  |  |
| - | - | - | - |  |  |
|  |  | - | - |  |  |
| - | - |  | - |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  | - |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| CE, cURus |  |  | CE |  |  |

# Grid and 

## Autonomously working disconnecting point for private small power plants

Why? Small power plants must be disconnected from the grid immediately in the event of a network shutdown or network disruption to avoid any danger to people and equipment.

Function: An automatic disconnection device monitors the feed-in of energy to the 230/400V grid. In case of a power failure or disruptions by the energy supplier it is vital for small power plants to be disconnected within a few milliseconds. Monitoring the voltage and frequency and recognizing isolated (off-grid) operation are essential requirements for any automatic disconnection device.

Requirement: Converting renewable energy into electricity is a key element of stabilising the global climate. In the context of small and micro power plants we mainly see photovoltaic installations, small wind power generators, cogeneration plants or small hydropower plants being used. The energy produced in this way is used to cover own consumption needs, or fed into the public grid to generate a profit. To ensure network safety, an automatic interface monitors the transfer between small power plants and the grid of the energy supplier (ES). Large power plants are managed and monitored directly by the ES using telecontrol engineering. This is too expensive and therefore uneconomical for the many private producers of electricity.

In the event of a power cut or a disruption in the grid of the energy supplier, small private power plants immediately have to be disconnected from the public grid to prevent unwanted feed-in.

Failure to disconnect from the grid without delay puts maintenance personnel at risk, while consumers can also be exposed to improper voltages and frequencies. The monitoring and the automatic disconnection are carried out by an automated interface. Small power plants have to be equipped with an automatic isolation unit that is checked and permitted by an accredited body. Country-specific norms define how the interface should be realised and checked in detail.

To meet the requirements of the standards and of the energy supply companies, the market offers solutions as individual components, multinational components as well as integrated solutions. The thresholds can even be adjusted outside the standard values if required by the network operator. Functionally safe devices also fulfil the monitoring function in the event of faults, recognise these faults and ensure a safe operating condition.

TELE's NA003 offers an optimal solution for any country and any requirement.


Wind power plant


Combined heat and power plant


Photovoltaic


Hydropower station


Biomass power plant


Battery storage


## Multifunctional device

## Open setup, <br> fully configurable without any limitations

## One device for low and medium voltage grid

| TYPE DESIGNATION | NA003 |
| :---: | :---: |
| ORDER INFORMATION |  |
| Art. No. | 2700000 |
| FUNCTIONALITY |  |
| Implemented standards | CEI 0-21 (Italy) <br> VDE V 0126-1-1 (Turkey, Belgium, France, Greece, ...) <br> VDE-AR-N 4105 - tested in accordance with VDE V 0124-100 (Germany, ...) <br> G59/3 (Great Britain - low voltage) <br> G59/3 (Great Britain - medium voltage) <br> G83/2 (Great Britain) <br> C10-11 (Belgium - low voltage) <br> C10-11 (Belgium - medium voltage) <br> TR3, TR8 - certified in accordance with BDEW 2008 (Germany - medium voltage) <br> OENorm E 8001-4-712 (Austria) <br> EN50438 (Europe) <br> EN50438 Denmark <br> NRS 097-2-1 (South Africa) <br> Open setup |
| Measuring variable | phase to phase voltage, phase to neutral voltage, 10 minute voltage average, frequency, frequency change (RoCoF), Phase shift (PShift) |
| Measuring range | phase to phase voltage: $0 \ldots 560 \mathrm{VAC}$, phase to neutral voltage: $0 \ldots 325 \mathrm{VAC}$ frequency: 40 ... 60 Hz , RoCoF $100 \mathrm{mHz} / \mathrm{s} . .22 .000 \mathrm{mHz} / \mathrm{s}$, Pshift 1 ... $15^{\circ}$ |
| Monitoring functions | $2 \times$ phase to neutral overvoltage, $2 \times$ phase to neutral undervoltage <br> $2 \times$ phase to phase overvoltage, $2 \times$ phase to phase undervoltage <br> $1 \times 10$ minutes voltage average (over) <br> $4 \times$ overfrequency, $4 x$ underfrequency, $1 \times$ random overfrequency <br> $1 \times$ RoCoF (over), $1 \times$ PShift (over) |
| Features | Each turn-off threshold is associated with its own turn-off time Fixed turn-on time, random turn-on time Configurable evaluation of the feedback contact <br> Enable / Disable functions via digital inputs <br> Enable / Disable functions via selectable operational mode <br> 4 different connection and measuring modes: <br> 2 wire (single phase L1, N), 3 wire ( 3 phase without N), <br> 4 wire (3 phase LL only), 4 wire (3 phase LL + LN) <br> Configurable nominal voltage <br> Functional safety <br> Password protection and ability to seal <br> Error memory with time stamp (entries) |
| Supply voltage | $\begin{gathered} 24 \mathrm{~V} \mathrm{DC} \pm 10 \% \\ 110 \text {... } 240 \mathrm{~V} \text { AC } \pm 30 \%, \end{gathered}$ |
| Rated frequency | $50 / 60 \mathrm{~Hz}$ or DC |
| Tolerance of rated frequency | $48 . . .63 \mathrm{~Hz}$ |
| Output circuit | 3 CO contacts 5A, 250V AC (1250VA) |
| Digital inputs | 5 inputs for potential free contacts ( $24 \mathrm{~V} / 5 \mathrm{~mA}$ ) |
| DESIGN |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $106.3 \times 90.5 \times 62 \mathrm{~mm}$ |
| Certificates | CE, EAC |

# Accessories 

## For our timing and monitoring relays as well as our power monitors and grid and system protection we offer the following accessories.



TR2, TR3, SNT series power modules for transforming the supply voltage to the internal operating voltage of GAMMA relays


[^1]
## Remote potentiometer RONDO series

Front panel mounting.
Adjusting values of intended timers and thyristor control units from distance.


R2

| TYPE DESIGNATION | SCALE | DIMENSIONS (W XHX D) | CONNECTIONS | ART. NO. |
| :--- | :---: | :---: | :---: | :---: |
| R2 1M $\Omega \mathbf{0 . 1}$ | $0,1-1$ |  | $1=$ First <br> $2=$ Wiper | 282130 |
| R20 10K $\Omega$ | $0-10$ | $\varnothing 28\left(\varnothing 22^{*}\right) \times 53 \mathrm{~mm}$ | 3 Finish | 282131 |

* Diameter front panel mounting


## Mounting plate MP

for fixing TELE devices on a mounting plate or wall


| TYPE DESIGNATION |
| :--- |
| MP |
| MP GAMMA |

Ø DRILL HOLES
$\varnothing 4 \mathrm{~mm}$

| DIMENSIONS (W X H X D) | ART. NO. |
| :---: | :---: |
| $22.1 \times 39.8 \times 7.0 \mathrm{~mm}$ | 075474 |
|  | 075574 |

## Probes - SK series

for monitoring level of conductive liquids


Front cover FA-G2
for GAMMA monitoring relays (width 22.5 mm )


# Complementary products 

$\oplus$In addition to our product range we also
offer the following complementary products:


## Switching relays

Sets
Accessoires

## Softstarter

Braking units
Thyristor control units

## Hour meters

Digital time switches
Countdown timer

DC power supplies

- Baffle-type current transformer series: WSW - Bar-type current transformer series: DSW
- Plug-in diode gate series: TREND

Page 43

- Coupling relays series: ENYA
- Automatic-Manual-OFF relay series: OCTO
- Analogue data encoder series: OCTO
- Levelswitch series: OCTO
- Interface Relays series: STKR and SKR

Page 45
Page 45
Page 45
Page 45
Page 46

- Softstarter series: MS3
- Motor starter series: P4.0
- Thyristor control units series: TST01, GTF
- Thyristor switch (SSR) series: GTS
- Fuse and fuse holders
- Hour meters series: TBG and TBW
- Digital time switches series: TSC
- Countdown timers series: TTC
- Switching power supplies


DSW 60

| TYPE DESIGNATION | RATED POWER | RATED PRIMARY CURRENT | SECONDARY CURRENT | DIMENSIONS | CLASS | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WSW 60 10A/5A 2,5VA | 2.5VA | 10A | 5A | $80 \times 60 \times 30 \mathrm{~mm}$ | 1 | 498063 |
| WSW 60 15A/5A 2,5VA | 2.5VA | 15A |  | $80 \times 60 \times 30 \mathrm{~mm}$ |  | 498064 |
| WSW 60 20A/5A 2,5VA | 2.5VA | 20A |  | $80 \times 60 \times 30 \mathrm{~mm}$ |  | 498065 |
| WSW 60 25A/5A 2,5VA | 2.5VA | 25A |  | $80 \times 60 \times 30 \mathrm{~mm}$ |  | 498066 |
| WSW 60 30A/5A 2,5VA | 2.5VA | 30A |  | $80 \times 60 \times 30 \mathrm{~mm}$ |  | 498067 |
| WSW 60 40A/5A 2,5VA | 2.5 VA | 40A |  | $80 \times 60 \times 30 \mathrm{~mm}$ |  | 498068 |
| DSW 60 50A/5A 1,25VA | 1.25 VA | 50A |  | $50.5 \times 50.5 \times 85 \mathrm{~mm}$ | 3 | 498069 |
| DSW 60 60A/5A 1,25VA | 1.25 VA | 60A |  | $33 \times 33 \times 50 \mathrm{~mm}$ | 1 | 498070 |
| DSW 60 75A/5A 2,5VA | 2.5 VA | 75A |  | $50.5 \times 50.5 \times 85 \mathrm{~mm}$ | 3 | 498071 |
| DSW 60 100A/5A 2,5VA | 2.5 VA | 100A |  | $33 \times 33 \times 50 \mathrm{~mm}$ | 1 | 498073 |
| DSW 60 150A/5A 3,75VA | 3.75 VA | 150A |  | $33 \times 33 \times 50 \mathrm{~mm}$ |  | 498075 |
| DSW 60 200A/5A 5VA | 5VA | 200A |  | $33 \times 33 \times 50 \mathrm{~mm}$ |  | 498076 |
| DSW 60 250A/5A 5VA | 5VA | 250A |  | $33 \times 33 \times 50 \mathrm{~mm}$ |  | 498077 |
| DSW 60 300A/5A 5VA | 5VA | 300A |  | $33 \times 33 \times 50 \mathrm{~mm}$ |  | 498078 |
| DSW 80 400A/5A | 10VA | 400A |  | $50.5 \times 50.5 \times 85 \mathrm{~mm}$ |  | 498081 |
| DSW 80 800A/5A | 10VA | 800A |  | $50.5 \times 50.5 \times 85 \mathrm{~mm}$ |  | 498084 |
| ACCESSORIES | DESCRIPTION |  |  |  |  | ART. NO. |
| MC-SW (2 pieces) | Mounting clip required for mounting the current transformer on DIN-Rail TS 35 |  |  |  |  | 498100 |

TREND series Plug-in diode gate (11-poles)

| TYPE DESIGNATION | INPUT / OUTPUT | $\begin{aligned} & \text { SUPPLY } \\ & \text { VOLTAGE } \end{aligned}$ | PEAK INVERSE VOLTAGE | REVERSE CURRENT | DURCHLASSSPANNUNG | FORWARD VOLTAGE | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TD1 | Input: 10 diodes Output: 1 diodes (Type 1N4007) | max. 250V | 1000V | $5 \mu \mathrm{~A}$ | ca. $0,8 \mathrm{~V}$ | Input: 0,7A per channel $0,1 \mathrm{~A}$ at simultaneous load Output: max. 1A | 2490000 |
| TD2 |  |  |  |  |  |  | 2490001 |



| TYPE DESIGNATION | E1K | E3K | HAR1 | OVP1 | OCP1 | OVL1 | OCL1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{cc} 00 & 00 \\ 00 & 00 \\ \cdots & \\ \cdots & \\ \hline & \\ \hline \end{array}$ |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |  |  |
| Art. No. | 110700 | 111700 | 170010 | 170012 | 170018 | 170015 | 170017 |
| FUNCTIONALITY | COUPLING RELAYS | COUPLING RELAYS | AUTOMATIC-MANUAL-OFF RELAY | ANALOGUE DATA ENCODER | ANALOGUE DATA ENCODER | LEVELSWITCH | LEVELSWITCH |
| Coupling unit | - | - |  |  |  |  |  |
| AUTO ... Automatic |  |  | ■ | ■ | ■ | $\square$ | $\square$ |
| 0 ... OFF |  |  | ■ | $\square$ | $\square$ | $\square$ | - |
| HAND ... Manual |  |  | - | $\square$ | $\square$ | $\square$ | $\square$ |
| SUPPLY CIRCUIT |  |  |  |  |  |  |  |
| Supply voltage | 24-240V AC/DC | 12-240V AC/DC | 24V AC/DC | 24V AC/DC | 24V AC/DC | 24V AC/DC | 24 V AC/DC |
| Rated frequency |  |  |  | $48-63 \mathrm{~Hz}$ |  |  |  |
| INPUT CIRCUIT |  |  |  |  |  |  |  |
| Control voltage | - | - | 24 V AC/DC | - | - | - | - |
| Analogue input DC | - | - | - | 0-10V | 0-20mA | 0-10V | $0-20 \mathrm{~mA}$ |
| Trigger level DC | - | - | - | 0-10V | 0-20mA | 1-10V | 2-20mA |
| CHECKBACK |  |  |  |  |  |  |  |
| Number of checkback contacts | - | - | 1 NO contact |
| Min. switching capacity | - | - | $5 \mathrm{mVA}(1 \mathrm{~mA} / 5 \mathrm{~V})$ |
| Max. switching capacity | - | - | 24 VA ( $500 \mathrm{~mA} / 48 \mathrm{~V}$ ) | $56 \mathrm{VA}(2 \mathrm{~A} / 28 \mathrm{~V})$ | 56VA (2A / 28V) | $56 \mathrm{VA}(2 \mathrm{~A} / 28 \mathrm{~V})$ | 56VA (2A / 28V) |
| OUTPUT CIRCUIT |  |  |  |  |  |  |  |
| Number of switching contacts | 1 CO contact | 2 CO contacts | 1 CO contact | - | - | 1 CO contact | 1 CO contact |
| Max. switching capacity $A C$ | 2000VA (8A / 250V) | 2000VA (8A / 250V) | 2000VA (8A / 250V) | - | - | 2000VA (8A / 250V) | 2000VA (8A / 250V) |
| Analogue output | - | - | - | 0-10V DC | 0-20mA | - | - |
| DESIGN |  |  |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 70 \mathrm{~mm}$ |
| Certificates |  |  |  | CE, EAC |  |  |  |

www.tele-online.com


| TYPE DESIGNATION | FUNCTION | RATED | LTAGE | RELAY VOLTAGE | NUMBER OF SWITCHING CONTACTS | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKR 524 | PLC coupling relay unit | 24 V | AC/DC |  | 1 CO contact | 180501 |
| SKR 024 |  | 24 V | DC |  |  | 180500 |
| SKR 730 |  | 230 V | AC |  |  | 180502 |
| STKR 524 | PLC coupling relay modular | 24 V | AC/DC | 24 V DC |  | 180504 |
| STKR 024 |  | 24 V | DC | 24 V DC |  | 180503 |
| STKR 730 |  | 230 V | AC | 60 V DC |  | 180505 |
| RM699V-3011-85-1024 | Relay for STKR | 24 V | DC |  |  | 100660 |
| RM699V-3011-85-1060 |  | 48 V | DC |  |  | 100661 |
| ACCESSORIES | FUNCTION |  |  | COLOUR | NUMBER OF POLES |  |
| PB-B SKR | Jumper link |  |  | Blue | 20 | 180535 |
| PB-R SKR |  |  |  | Red |  | 180536 |

$\mathbf{R A}$, RM series miniature relays / RP series PCB relays

$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline \text { TYPE DESIGNATION } & \text { RATED VOLTAGE } & \text { LED } & \begin{array}{c}\text { GOLD-PLATED } \\ \text { CONTACTS }\end{array} & \text { NUMBER OF SWITCH- } \\ \text { ING CONTACTS }\end{array}\right]$

RT series industrial relays


RT

| TYPE DESIGNATION | RATED VOLTAGE |  | LED | RECOVERY DIODE | GOLD-PLATED CONTACTS | NUMBER OF SWITCHING CONTACTS | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RT 1.2.012L | 12 V | AC | - |  |  | 2 CO contacts | 100508LD |
| RT 1.2.024L | 24 V |  | $\square$ |  |  |  | 100507LD |
| RT 1.2.110L | 110 V |  | - |  |  |  | 100505LD |
| RT 1.2.230L | 230 V |  | - |  |  |  | 100502LD |
| RT 2.2.012L | 12 V | DC | - |  |  |  | 100517LD |
| RT 2.2.024L | 24 V |  | - |  |  |  | 100516LD |
| RT 1.3.024L | 24 V | AC | - |  |  | 3 CO contacts | 100526LD |
| RT 1.3.048L | 48 V |  | $\square$ |  |  |  | 100524LD |
| RT 1.3.110L | 110 V |  | $\square$ |  |  |  | 100522LD |
| RT 1.3.230 | 230 V |  |  |  |  |  | 100521 |
| RT 1.3.230L | 230 V |  | - |  |  |  | 100521LD |
| RT 1.3.230.02L | 230 V |  | - |  | - |  | 100521H |
| RT 2.3.012L | 12 V | DC | $\square$ |  |  |  | 100536LD |
| RT 2.3.024 | 24 V |  |  |  |  |  | 100535 |
| RT 2.3.024L | 24 V |  | - |  |  |  | 100535LD |
| RT 2.3.024LD | 24 V |  | - | $\square$ |  |  | 100535FD |
| RT 2.3.024.02LD | 24 V |  | $\square$ | $\square$ | $\square$ |  | 100535H |
| RT 2.3.048L | 48 V |  | - |  |  |  | 100533LD |
| RT 2.3.110 | 110 V |  |  |  |  |  | 100531 |
| RT 2.3.220 | 220 V |  |  |  |  |  | 100530 |

COMBI series multifunction timing module for industrial relays with socket type ES9 and PF-113BEM

| TYPE DESIGNATION | FUNCTIONS | TIME RANGES | SUPPLY VOLTAGE | NUMBER OF SWITCHING CONTACTS | DIMENSIONS (W X H X D) | CERTIFICATES | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COM3T | $\stackrel{8}{8} \stackrel{8}{ }$ R, Ws, Wa, Wu, Es, Bp, Bi | $\begin{gathered} 8 \\ (0.05 \mathrm{~s}-10 \mathrm{~d}) \end{gathered}$ | 24-240V AC/DC | 2 or 3 CO contacts (according to selected industrial relay) | $35 \times 12 \times 47 \mathrm{~mm}$ | CE, cURus | 237010 |

Sockets for switching relays

| TYPE DESIGNATION | FOR SERIES | RATED VOLTAGE |  | ART. NO. |
| :---: | :---: | :---: | :---: | :---: |
| PYF14BE (ES 15/4N) | RA, RM | 300 V | AC | 180134 |
| PYF14BE3 (ES 15/4S) |  |  |  | 180145 |
| PYF14BE3CC (ES 15/4G) |  |  |  | 180148 |
| CST-B14F2-L (ES 15/4B) |  |  |  | 180146 |
| RSS214 | RM |  |  | 180050 |
| PI50BE/3R (ES 50/3) |  |  |  | 180150 |
| PI50BE/3-CC (ES50/3G) | RP |  |  | 180149 |
| PI50BE (ES 50) |  |  |  | 180137 |
| PSS8/3 |  |  |  | 180056 |
| PF083BE (ES8) | RT 8-pin |  |  | 180139 |
| ES 9 | RT-pin |  |  | 180041 |
| PF113BEM (ES12) | RT 11-pin |  |  | 180136 |
| R11X |  |  |  | 180055 |



COM3T + ES9 + RT1.2.012L

Modules and accessories for switching relays

| TYPE DESIGNATION | TYPE DESCRIPION | FOR SOCKETS SERIES | FOR SWITCHING RELAYS SERIES | RATED VOLTAGE | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M21N | Diode | PYF | RA, RM | 6-230V DC (+A1) | 180261 |
| M41R | LED (red) + Diode | PYF | RA, RM | $6-24 \mathrm{~V}$ DC (+A1) | 180263 |
| EM 12 | LED (green) + Diode | RSS214 | RM | 6-24V DC (+A1) | 180309 |
| EM 03 | RC-link | RSS214 | RM | 110-230V AC | 180300 |
| TYPE41 (TVL1) | LED + Diode | PF113BEM | RT | 6-24V DC (+A1) | 180232 |
| HB/RM-RA | Retaining Clip (metal) | RSS214, ES15, PYF | RA, RM |  | 180032 |
| HB/ES15 | Retaining Clip (plastic) | ES15, PYF | RA, RM |  | 180153 |
| HB/RT | Retaining Clip (metal) | PF083BE, PF113BEM, ES9, R11X | RT |  | 180043 |
| HB/RP 16 | Retaining Clip (plastic) | P150 | RP |  | 180029 |
| HB/PSS | Retaining Clip (plastic) | PSS8/3 | RP |  | 180060 |

www.tele-online.com

| TYPE DESIGNATION | MOTOR CONTROL | NOMINAL CURRENT | NOMINAL MOTOR POWER | DIMENSIONS (W X H X D) | ART.NO. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MS3 2,2 | 3-phase | 4.5A | 2.2 kW | $42 \times 128 \times 130 \mathrm{~mm}$ | 490460 |
| MS3 3,0 |  | 6.6 A | 3.0 kW | $42 \times 128 \times 130 \mathrm{~mm}$ | 490461 |
| MS3 4,0 |  | 8.5 A | 4.0kW | $42 \times 128 \times 130 \mathrm{~mm}$ | 490462 |
| MS3 5,5 |  | 12A | 5.5 kW | $42 \times 128 \times 130 \mathrm{~mm}$ | 490463 |
| MS3 7,5 |  | 18A | 7.5kW | $51 \times 141 \times 181 \mathrm{~mm}$ | 490464 |
| MS3 11,0 |  | 25A | 11 kW | $51 \times 141 \times 181 \mathrm{~mm}$ | 490465 |
| MS3 15,0 |  | 30A | 15kW | $51 \times 224 \times 179 \mathrm{~mm}$ | 490466 |
| MS3 18,5 |  | 37A | 18.5 kW | $51 \times 224 \times 179 \mathrm{~mm}$ | 490467 |
| MS3 22,0 |  | 45A | 22 kW | $51 \times 224 \times 179 \mathrm{~mm}$ | 490468 |

P4.0 motor starter (with and without motor protection)

| TYPE DESIGNATION | FUNCTIONALITY | MOTOR CONTROL | NOMINAL CURRENT | NOMINAL MOTOR POWER | DIMENSIONS (W X H X D) | CERTIFICATES | ART.NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHRISTIAN P-4.0/RL/OL | Forward/Reverse, soft start, current limit, blocking protection, soft stop | 2-phase | 9 A | 4kW | $22.5 \times 105 \times 120.3 \mathrm{~mm}$ | CE, cULus (listing pending) | 490800 |
| CHRISTIAN P-4.0/RL//TP/IC | Forward/Reverse, soft start, soft stop, motor protection + isolation contactor | 2-phase | 9A | 4kW | $22.5 \times 105 \times 120.3 \mathrm{~mm}$ | CE, cULus (listing pending) | 490801 |

TST01 series thyristor control unit (compact design)

| TYPE DESIGNATION | $\mathrm{P}_{\text {HEATER }}$ | AUXILIARY VOLTAGE | $\begin{gathered} \mathrm{I}_{\text {MAX }} \\ 100 \% \text { DUTY CYCLE } \end{gathered}$ | $\begin{aligned} & I_{\text {MAX }} \\ & 10 \mathrm{~ms} \end{aligned}$ | DIMENSIONS <br> (W X H X D) | ART.NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TST01-08/230 | 1,8kW | 230V / Internal | 8A | 200A | $45 \times 97 \times 126 \mathrm{~mm}$ | 499015 |
| TST01-12/230 | 2,7kW |  | 12A | 200A |  | 499016 |
| TST01-16/230 | 3,6kW |  | 16A | 300A |  | 499017 |
| TST01-20/230 | 4,6kW |  | 20A | 400A |  | 499018 |
| TST01-25/230 | 5,75kW |  | 25A | 400A |  | 499019 |



MS3


P4.0


TST01

| TYPE DESIGNATION | AUXILIARY VOLTAGE | NOMINAL VOLTAGE | NOMINAL CURRENT | FAN | INTERNAL FUSE | OPERATING MODE | DIMENSIONS ( W X H X D) | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GTF-25-480-0-0-0-0 1-P-M | 24V AC/DC | 480V AC * | 25A |  |  | Phase clipping control (other operating modes configurable) | $60 \times 136,5 \times 143 \mathrm{~mm}$ | 493100 |
| GTF-40-480-0-0-0-0 1-P-M |  |  | 40A |  |  |  | $60 \times 136,5 \times 143 \mathrm{~mm}$ | 493105 |
| GTF-50-480-0-0-0-0 1-P-M |  |  | 50A |  |  |  | $80 \times 136,5 \times 143 \mathrm{~mm}$ | 493108 |
| GTF-60-480-0-0-0-0 1-P-M |  |  | 60A |  |  |  | $80 \times 136,5 \times 143 \mathrm{~mm}$ | 493111 |
| GTF-75-480-0-0-0-0 1-P-M |  |  | 75A |  |  |  | $127 \times 136,5 \times 143 \mathrm{~mm}$ | 493121 |
| GTF-90-480-0-0-0-0 1-P-M |  |  | 90A |  |  |  | $127 \times 136,5 \times 143 \mathrm{~mm}$ | 493131 |
| GTF-120-480-0-0-0-0 1-P-M |  |  | 120A | ■ |  |  | $127 \times 150,5 \times 143 \mathrm{~mm}$ | 493141 |
| GTF-150-480-0-0-1-0 1-P-M |  |  | 150A | ■ | - |  | $108,3 \times 302 \times 170,4 \mathrm{~mm}$ | 493152 |
| GTF-200-480-0-0-1-0 1-P-M |  |  | 200A | $\square$ | - |  |  | 493161 |
| GTF-250-480-0-0-1-0 1-P-M |  |  | 250A | ■ | - |  |  | 493171 |
| Configuration cable + software |  |  |  |  |  |  |  | 493090 |

* other nominal voltages upon request

GTF

GTS

Fuse holder

GTS series Thyristor switch (compact design, operating mode zero point switch)

| TYPE DESIGNATION | NOMINAL VOLTAGE | NOMINAL CURRENT | CONTROL INPUT | FAN | DIMENSIONS <br> (W X H X D) | ART. NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GTS-15/48-D-0 | 480 V AC * | 15A | 6-32V DC |  | $24 \times 100 \times 107 \mathrm{~mm}$ | 493010 |
| GTS-25/48-D-0 |  | 25A |  |  | $24 \times 100 \times 107 \mathrm{~mm}$ | 493005 |
| GTS-40/48-D-0 |  | 40A |  |  | $35 \times 100 \times 142 \mathrm{~mm}$ | 493003 |
| GTS-50/48-D-0 |  | 50A |  |  | $60 \times 100 \times 142 \mathrm{~mm}$ | 493001 |
| GTS-60/48-D-0 |  | 60A |  |  | $80 \times 100 \times 142 \mathrm{~mm}$ | 493020 |
| GTS-75/48-D-0 |  | 75A |  |  | $127 \times 100 \times 142 \mathrm{~mm}$ | 493021 |
| GTS-90/48-D-0 |  | 90A |  |  | $127 \times 100 \times 142 \mathrm{~mm}$ | 493022 |
| GTS-120/48-D-0 VEN92 |  | 120 A |  | - | $127 \times 100 \times 142 \mathrm{~mm}$ | 493023 |

* other nominal voltages upon request

Semiconductor fuse (capsule fuse)

| TYPE DESIGNATION | NOMINAL <br> CURRENT | NOMINAL CURRENT <br> THYRISTOR CONTROL | FUSE SIZE | ART. NO. |
| :--- | :---: | :---: | :---: | :---: |
| HL-Fuse 5A | 10A | $5 A$ | $10 \times 38 \mathrm{~mm}$ | 490971 |
| HL-Fuse 15A | 25 A | 15 A | $10 \times 38 \mathrm{~mm}$ | 490975 |
| HL-Fuse 25A | 30 A | 25 A | $10 \times 38 \mathrm{~mm}$ | 490972 |
| HL-Fuse 35A | 40 A | 35 A | $41 \times 51 \mathrm{~mm}$ | 490973 |
| HL-Fuse 50A | 63 A | 50 A | $22 \times 58 \mathrm{~mm}$ | 490974 |
| HL-Fuse 50A GTF | 50 A | 50 A | $22 \times 58 \mathrm{~mm}$ | 490986 |

Fuse holder (capsule fuse)

| TYPE DESIGNATION | RATED CURRENT |
| :--- | :---: | :--- | :--- | :--- |
| (IEC) |  |



| DAILY-, WEEKLY- OR YEARLY PROGRAM, DIN-RAIL MOUNTING |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE DESIGNATION | SUPPLY VOLTAGE | CHANNELS | $\begin{aligned} & \text { NUMBER OF } \\ & \text { SWITCHING CONTACTS } \end{aligned}$ |  | ASTRO FUNCTION | SWITCHING CAPACITY | RATED CONSUMPTION | DIMENSIONS | ART. NO. |
|  |  |  | CO | NO |  |  |  |  |  |
| TSC18.10EASY* | 230 V AC | 1 |  | 1 |  | 4000VA | 1.5VA | $35.8 \times 90 \times 60 \mathrm{~mm}$ | 711149 |
| TSC28.11 | 230 V AC | 1 | 1 |  |  | 4000VA | 1.5 VA | $35.8 \times 90 \times 60 \mathrm{~mm}$ | 711142 |
| TSC28.21 | 230 V AC | 2 | 2 |  |  | 4000VA | 1.5 VA | $35.8 \times 90 \times 60 \mathrm{~mm}$ | 711143 |
| TSC28.23 | 230 V AC | 2 | 2 |  | $\square$ | 4000VA | 1.5VA | $35.8 \times 90 \times 60 \mathrm{~mm}$ | 711147 |
| TSC98.20 | 230 V AC | 2 | 2 |  |  | 2500VA | 2VA | $71.5 \times 120 \times 60 \mathrm{~mm}$ | 711132 |
| TSC98.40 | 230 V AC | 4 | 3 | 1 |  | 2500VA | 2VA | $71.5 \times 120 \times 60 \mathrm{~mm}$ | 711131 |
| *EASY ... programmable via smartphone (NFC) |  |  |  |  |  |  |  |  |  |



TSC44.21PRO

| DAILY-, WEEKLY- OR YEARLY PROGRAM, FRONT PANEL MOUNTING |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE DESIGNATION | SUPPLY VOLTAGE | CHANNELS | NUMBER OF SWITCHING CONTACTS |  | SWITCHING CAPACITY | RATEDCONSUMPTION | DIMENSIONS | ART. NO. |
|  |  |  | CO | NO |  |  |  |  |
| TSC44.11PRO | 24 V AC | 1 | 1 |  | 4000VA | 0.9VA | $72 \times 94.5 \times 53 \mathrm{~mm}$ | 711574 |
| TSC44.11PRO | 115 V AC | 1 | 1 |  | 4000VA | 2.8VA | $72 \times 94.5 \times 53 \mathrm{~mm}$ | 711576 |
| TSC44.21PRO | 230 V AC | 2 | 1 | 1 | 4000VA | 1.5VA | $72 \times 94.5 \times 53 \mathrm{~mm}$ | 711579 |

TTC series digital time switches


TTC24.21

| COUNTDOWN TIMER, FRONT PANEL MOUNTING |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE DESIGNATION | SUPPLY VOLTAGE | TIME RANGE | NUMBER OF SWITCH- <br> ING CONTACTS | DIMENSIONS | ART. NO. |  |  |
| TTC24.21 | 230 V AC | 99 h 59 min 59 s | 1 CO contact | $48 \times 48 \times 41 \mathrm{~mm}$ | 711450 |  |  |

TBG, TBW series analogue hour meters


| TBG SERIES, DC VOLTAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE DESIGNATION | SUPPLY VOLTAGE | COUNTING CAPACITY | ACCURACY OF READING | DIMENSIONS | ART. NO. |
| TBG30.18 | 12-48V DC | 999999 h | 0.1 h | $53.2 \times 28.2 \times 63 \mathrm{~mm}$ | 711056 |
| TBG40.17 |  |  |  | $48 \times 48 \times 38 \mathrm{~mm}$ | 711025 |
| TBG70.18 |  | 99999 h |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711435 |
| TBG70.29 |  |  |  | $35 \times 90 \times 60 \mathrm{~mm}$ | 711408 |



TBG/TBW40


TBG/TBW70.18


TBG/TBW70.29

| TBW SERIES, AC VOLTAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE DESIGNATION | SUPPLY VOLTAGE | RATED FREQUENCY | COUNTING CAPACITY | ACCURACY OF READING | DIMENSIONS | ART. NO. |
| TBW40.18 | 24 V AC | 50 Hz | 99999 h | 0.01 h | $48 \times 48 \times 38 \mathrm{~mm}$ | 711045 |
| TBW40.18 | 115 V AC |  |  |  | $48 \times 48 \times 38 \mathrm{~mm}$ | 711042 |
| TBW70.18 | 115 V AC |  |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711434 |
| TBW30.18 | 230 VAC |  |  |  | $53.2 \times 28.2 \times 63 \mathrm{~mm}$ | 711050 |
| TBW40.18 | 230 V AC |  |  |  | $48 \times 45 \times 38 \mathrm{~mm}$ | 711040 |
| TBW70.18 | 230 V AC |  |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711430 |
| TBW70.29 | 24 V AC | $50 / 60 \mathrm{~Hz}$ |  | 0.1 h | $35 \times 90 \times 60 \mathrm{~mm}$ | 711355 |
| TBW70.89 | 48 V AC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711139 |
| TBW70.89 | 115 V AC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711140 |
| TBW70.89 | 230 V AC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711141 |
| TBW70.29 | 230 V AC |  |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711350 |
| ACCESSORIES TBG, TBW | DESCRIPTION |  |  |  |  | ART. NO. |
| SB-TBX30 | Tension bracket for TBG/TBW30 |  |  |  |  | 711809 |
| B55-TBX40 | Shutter for TBG/TBW40 ( $55 \times 55 \mathrm{~mm}$ ) |  |  |  |  | 711800 |
| ME72-TBX40 | Screen for TBG/TBW40 ( $72 \times 72 \mathrm{~mm}$ ) |  |  |  |  | 711801 |
| SB-TBX40 | Retaining clip for TBG/TBW40 |  |  |  |  | 711807 |
| DR-TBW40 | Sealing ring for TBW40 (IP54) |  |  |  |  | 711813 |
| KA-TBX70.29 | Terminal cover for TBG/TBW70.29 (sealable) |  |  |  |  | 711812 |




DRA 480-24A* (Backup)


AMR1-24

| INDUSTRIAL HOUSING FOR SWITCH CABINET AND PLANT CONSTRUCTION |  |  |
| :---: | :---: | :---: |
| $\checkmark$ Output voltage 5-48V DC |  |  |
| $\checkmark$ Output power 5-960w |  |  |
| $\checkmark$ Overload and short circuit protection |  |  |
| Output voltage | Output power | Output current |
| 5 V DC | 5W | 1A |
|  | 10W | 2 A |
|  | 15W | 3A |
|  | 30w | 6A |
|  | 50W | 10A |
| 12 V DC | 10W | 0.8A |
|  | 18W | 1.5A |
|  | 30W | 2.5 A |
|  | 42W | 3.5A |
|  | 60W | 5A |
|  | 76W | 6.3A |
|  | 120w | 10A |
| 15V DC | 5 W | 0.3A |
|  | 18W | 1.2A |
|  | 42 W | 2.8A |
| 24V DC | 5W | 0.2A |
|  | 10W | 0.4A |
|  | 18W | 0.8A |
|  | 30W | 1.25A |
|  | 48 W | 2A |
|  | 60W | 2.5A |
|  | 75W | 3.2A |
|  | 120w | 5A |
|  | 240w | 10A |
|  | 300w | 12.5A |
|  | 480W | 20A |
|  | 960W | 40A |
| 48 V DC | 120W | 2.5A |
|  | 240W | 5A |
|  | 480w | 10A |


| INDUSTRIAL HOUSING FOR BACK-UP SYSTEMS |  |  |
| :---: | :---: | :---: |
| $\checkmark$ Power supply units with total discharge |  |  |
| $\checkmark$ For back-up systems (e.g. batteries) |  |  |
| $\checkmark$ Output voltage 12 -28.5V DC |  |  |
| $\checkmark$ Output power 30-480w |  |  |
| Output voltage | Output | Output current |
| 12 V DC | 30W | 2.2A |
|  | 60W | 4.4A |
|  | 120W | 8.8A |
| 24 V DC | 30W | 1.1A |
|  | 60W | 2.2A |
|  | 120W | 4.4A |
|  | 240W | 8.8A |
|  | 480W | 17.6A |


| INSTALLATION HOUSING FOR BUILDING AND PLANT ENGINEERING |  |  |
| :---: | :---: | :---: |
| $\checkmark$ Output voltage 12-24V DC |  |  |
| $\checkmark$ Output power 10-100w |  |  |
| $\checkmark$ Overload and short circuit protection |  |  |
| Output voltage | Output power | Output current |
| $12 \mathrm{~V} D$ | 10W | 0.8 A |
|  | 24W | 2A |
|  | 54W | 4.5A |
|  | 90W | 7.5A |
| 24 V DC | 10W | 0.4 A |
|  | 24W | 1A |
|  | 36W | 1.5A |
|  | 60W | 2.5A |
|  | 100W | 4.2A |


|  | E |  | 1 |  | Z |  | M |  | F | 20 | P | 24-240V AC/DC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRODUCT SERIES |  | HOUSING |  | MEASUREMENT PARAMETER |  |  | FUNCTION |  | ADDITIONAL FUNCTION | OUTPUT | TERMINAL | SUPPLY VOLTAGE |
| E V G K | ENYA <br> VEO <br> GAMMA <br> KAPPA | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 17,5 \mathrm{~mm} \\ & 22,5 \mathrm{~mm} \\ & 35,0 \mathrm{~mm} \\ & 45,0 \mathrm{~mm} \end{aligned}$ | Z | Timer | M <br> Q <br> E <br> R <br> I <br> S <br> A <br> NT <br> TP <br> WI <br> ET | Multifunction Quattro (4 funct.) ON Delay OFF Delay 2 time function Star-delta OFF Delay without auxiliary voltage Emergency light tester Staircase timer Impulse switch mode ON Delay 2-wire connected | F | Remote potentiometer | delayed <br> 101 contact <br> 202 contacts <br> instantaneous <br> 011 contact <br> 022 contacts <br> delayed/ <br> instantaneous <br> 11 <br> 1 delayed <br> contact <br> 1 instantane- <br> ous contact | Push-in terminal (VEO) <br> Potential free contact (KAPPA) | $\begin{aligned} & 230 \mathrm{VAC} \\ & 24 \mathrm{~V} \text { DC } \\ & 24-240 \mathrm{VAC} / \mathrm{DC} \end{aligned}$ etc. |

Type code monitoring relays

| V |  | 4 |  | I |  | M | 100 A |  | L | 20 | P | 24-240 V AC/DC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRODUCT SERIES |  | HOUSING |  | MEASUREMENT PARAMETER |  | JNCTION | MEASUREMENT RANGE |  | ADDITIONAL FUNCTION | OUTPUT | TERMINAL | SUPPLY VOLTAGE |
| E ENYA <br> v VEO <br> G GAMMA <br> K KAPPA | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 17,5 \mathrm{~mm} \\ & 22,5 \mathrm{~mm} \\ & 35,0 \mathrm{~mm} \\ & 45,0 \mathrm{~mm} \end{aligned}$ |  | Voltage 1~ <br> Voltage 3~ $\Delta$ <br> Voltage 3~Y <br> Current 1~ <br> Current 3~ <br> Frequency <br> Temperature <br> Level <br> Effective <br> power <br> $\cos \varphi$ | U <br> 0 <br> W <br> F <br> M <br> A | Under <br> Over <br> Window <br> Error <br> Multi <br> Analog <br> output | $\begin{aligned} & 230 \mathrm{~V} \\ & 10 \mathrm{~A} \\ & 400 \mathrm{~V} 12 \mathrm{~A} \\ & \text { PT100 } \\ & \text { etc. } \end{aligned}$ | L D T Y S F F T K K | Latch <br> Digital <br> Thermistor <br> Asymmetry <br> Phase <br> sequence <br> Quick action <br> release <br> Test function <br> Short circuit <br> monitoring <br> Zero voltage <br> safe | delayed <br> 101 contact <br> 202 contacts <br> instantaneous <br> 011 contact <br> 022 contacts | Push-in terminal | $\begin{aligned} & 230 \mathrm{VAC} \\ & 24 \mathrm{~V} \text { DC } \\ & 24-240 \mathrm{VAC} / \mathrm{DC} \\ & \text { etc. } \end{aligned}$ |



For contact data of your local distributor please visit
http://www.tele-online.com/en/organization/distribution/

## Rotele

TELE Haase Steuergeraete Ges.m.b.H.
Vorarlberger Allee 38
Vienna, 1230
Austria


[^0]:    Please refer to the chapter accessories for detailed information and ordering data of remote potentiometers and to the chapter accessories for detailed information and ordering data of power modules TR2, TR3 and SNT2

[^1]:    * may only be used with types G4PM and G4BM!

