

Overview of our timing- and monitoring relays, load monitors, grid and system protection and complementary products

## Technology for More Time and Greater Security

We are the Austrian market leader for timing and monitoring relays. Our relays might be small but they pack a punch.


Wide range of timing relay products
V Monitoring devices for physical quantities such as current, voltage, temperature, frequency, level, power factor, active power ...

- Provider of high-quality industrial switching relays and power electronics

V Extensive technical expertise thanks to $\mathbf{5 0}$ years of experience
, Global sales network

Tele Haase was founded in 1963 and is Austria's marke leader in developing state-of-the-art monitoring, control and automation technology.

Tele relays function dependably in water treatment plants, transformer stations and industrial plants and are used during renewable energy generation in wind, hydroelectric and solar power plants.
rele developments meet international quality standards and contribute to environmentally friendly generation of renewable energy using water, wind and the sun
ele Haase, as a company of the future, has set out to help actively shape social change toward sustainability over the long term by obtaining maximum energy and using this energy as carefully and effectively as possible.
Our some 90 highly qualified employees fulfill the high equirements and requests of our customers day in, day out.

ELE Haase produces one-hundred percent of its core products in Austria. Research and development as well as production at our head office in Vienna are our core areas of expertise. Our sales team and more than 50 international trade partners make up our global sales network.


## Product classes

Our product range consists
of the following high quality products:


## Product series

Our large and small quartet:
ENYA, VEO, GAMMA and KAPPA - play it safe!


## Product features

Each of our products is characterized by special product features:

## ENYA

- Installation design ( 45 mm standard front dimension)
- Timing and monitoring relays, Single and Multifunction

V Width 17.5 mm and 35 mm , 1 or 2 changeover contacts (CO)

V UL listed, CE conformity markingTemperature range -25 to $+55^{\circ} \mathrm{C}$

- Recessed potentiometer buttons, analog indication by means of LED
- 12 to 240 V AC/DC, powered by measuring circuit

- Industrial design for mounting plate and cable channels
- Timing and monitoring relays, Single and Multifunction
- Width 22.5 mm and 45 mm , 1 or 2 changeover contacts (CO)
- Low profile

V UL listed, CE conformity marking

- Temperature range -25 to $+60^{\circ} \mathrm{C}$
- Recessed potentiometer buttons, analog indication by means of LED
v 12 to 240 V AC/DC, powered by measuring circuit

GAMMA

Industrial design
Timing and monitoring relays, Single and Multifunction

- Width 22.5 mm and 45 mm 1 or 2 changeover contacts (CO)UL listed, CE conformity markingTemperature range -25 to $+55^{\circ} \mathrm{C}$
- Recessed potentiometer buttons, analog indication by means of LED, digital indication by means of LCD-Display
- 12 to $240 \mathrm{~V} \mathrm{AC/DC}$, powermodules 12 to 500 V AC; 24 V DC

KAPPA

- Industrial Plug-In housing ( 45 mm standard front dimension)
- Timing and monitoring relay Single and Multifunction

V Width $35 \mathrm{~mm}, 2$ changeover contacts (2CO) or 1 changeover and 1 normally open contact ( $1 \mathrm{CO}+1 \mathrm{NO}$ )

- CE conformity marking

V Temperature range -25 to $+55^{\circ} \mathrm{C}$
V Recessed potentiometer buttons, analog indication by means of LED

V 12 to 240 V AC/DC, powered by measuring circuit

MORE PRODUCT INFOS
a www.tele-online.com


## Function overview timing relays

Our timing relays have a variety of functions here they are in detail:

| E | ON delay |  |
| :---: | :---: | :---: |
| $\begin{gathered} U \\ \operatorname{LED} U / t \\ R \end{gathered}$ |  | When the supply voltage $U$ is applied, the set interval $t$ begins. After the interval $t$ has expired the output relay $R$ switches into on-position. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the set interval, the interval t already expired is erased and is restarted when the supply voltage is next applied. |
| A | OFF delay without auxiliary voltage |  |
| When the supply voltage $U$ is supplied, the output relay $R$ swiches into on-position. If the supply voltage is interrupted, the set interval $t$ begins. After the set interval $t$ has expired the output relay $R$ switches into offposition. If the supply voltage is reconnected before the interval t has expired the interval already is erased and is restarted with the next cycle. |  |  |
| R | OFF delay |  |
|  <br> The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the output relay R switches into on-position. If the control contact is opened, the set interval t begins. After the interval t has expired the output relay switches into off-position. If the control contact is closed again before the set interval has expired, the interval already expired is erased and is restarted. |  |  |
| S | Star-Delta Start-up |  |
|  |  | When the supply voltage U is applied, the star-contact switches into on-position and the set star-time $t 1$ begins. After the interval t 1 has expired the star-contact switches into off-position and the set transit-time t 2 begins. After the interval t2 has expired the delta-contact switches into on-position. To restart the function the supply voltage must be interrupted and re-applied. |
| ER | ON delay and OFF delay with control contact |  |

The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the set interval tt begins. After the interval $t 1$ has expired, the output relay $R$ switches into on-position. If the controf ntact is opened, the set interval t2 begins. After the interval 12 has expired, the output relay Switches into off osition. If the control contact is opened before the interval 1 t has expired, the interval already expired is erased and is restarted with the next cycle.

When the supply voltage $U$ is applied, the release for the interval starts. When the control contact $S$ is closed the set intervalt teegins. If the control contact $S$ is opened during the set interval $t$, the interval stops, and the already expired interval is stored. During the lapse of time the control contact can be opened or closed as often relay R switches into on-positionds in which the control contact $S$ is closed reaches the set interval the outpu without effect. By interrupting the supply voltage, the device will be reset. A possibly expired time tis deleted.

Es ON delay with control input


The supply voltage $U$ must be constanty applied to the device. When the control contact S is closed, the set interval t begins. Atter the interval t has expired the output relay R switches into on-position. This status remain until the control contact is opened again. If the control contact is opened before the interval t has expired, the interval arready expired is erased and is restarted with the next cycle.

## ET $\quad$ ON delay two wire connected



When the supply voltage $U$ is applied, the set interval begins. After the interval has expired the thyristor switches on. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the applied.

Wu
Single shot leading edge voltage controlled
When the supply voltage $U$ is applied, the output relay R switches into on--position and the set interval t begins.
LED U/t

EWu ON delay single shot leading edge with control contact


When the supply voltage U is applied, the set interval t 1 begins. After the interval t 1 has expired, the output relay $R$ switches into on-position and the set interval t2 begins. After the interval 12 has expired, the output relay switches into off-position. If the supply voltage is interrupted before the interval $11+2$ has expired, the interva Iready expired is erased and is restarted when the supply voltage is next applied.

## nWu Maintained single shot leading edge



When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval t begins. Atter the interval t has expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the su

Ws $\quad$ Single shot leading edge with control input


> The supply voltage U must be constantly applied to the device. When the control contact $S$ is closed, the set interval b begins. After the interval thas expired the output reay $R$ s sitches into on-position. This status remains until the ocontoro contact is opened again. If the eontrol contatact is pened before the interval t has expired, the interval already expired is erased and is restarted with the next cycle.

EWs ON delay single shot leading edge with control contact


The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position and the set interval t 2 begins. Atter the interval $t 2$ has expired, the output relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Wa Single shot trailing edge with control input


The supply voltage $U$ must be constantly applied to the device. Closing the control contact $S$ has no influence on the condition of the output $R$. When the control contact is opened, the output relay switches into on-position and the condition of the output $R$. When the control contact is opened, the output relay switches into oon-position and
the set interval begins. Ater the set interval has expired, the ouput relay switches into off-position. During the the set interval t begins. Atter the set interval has expired, the ouput relay switches into off-position. During the
interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.
$\mathrm{nWa} \quad$ Maintained single shot trailing edge


When the supply voltage U is supplied, the output relay R remains into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position and the set interval t begins. Ater the set interval thas expired the output relay switches into off-position. When the supply voltage is reconnected before the interval $t$ has expired, the unit continues to perform the actual single shot.

## nWuWa Maintained single shot leading and trailing edge



When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval t has expired the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again and the set interval t begins. Ater the set interval $t$ has expired the output relay switches into off-position. If the supply voltage is interrupted (nWu) or reconnected (nWa) before the interval thas expired the unit continues to perform the actual single shot

WsWa $\quad$ Single shot leading and single shot trailing edge with control contact


The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the output relay R switches into on-position and the set interval t 1 begins. After the interval 11 has expired, the output relay $R$ switches into off-position. If the control contact is opened, the output relay again switches into on-position and
the set interval $t 2$ begins. After the interval t 2 has expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times.

Bi
Flasher pulse first

U
LED U/t
$R$

## 11111111111

t t t t

When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval t begins. After the interval t has expired, the output relay R switches into off-position and the set interval t begins again. The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

Bp $\quad$ Flasher pause first

## 1111111141

$t E t E t$

When the supply voltage $U$ is applied, the set interval t begins. After the interval t has expired, the output rela $R$ switches into on-position and the set interval tbegins again. After the intervalt has expired, the output relay switches into off-position. The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

Wt
Asymmetric flasher pulse first


When the supply voltage $U$ is applied, the set interval $t$ begins and the output relay $R$ switches into on-position After the interval 11 has expired, the set interval $t 2$ begins. So that the output relay $R$ remains in on-position, the control contact $S$ must be closed and opened again within the set interval 12 . If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

## li Asymmetric flasher pulse first

When the supply voltage U is applied, the output relay R switches into on-position and the set interval 11 begins. After the interval 11 has expired, the output relay switches into off-position and the set interval t 2 begins. Atter the interval 12 has expired, the output relay switches into on-position. The output relay is triggered at the ratio of t1:t2 until the supply voltage is interrupted.

## Asymmetric flasher pause first

##  $\mathrm{R} \mathrm{t}_{1}$ t2 t 1 t2 t

When the supply voltage $U$ i s applied, the set interval 11 begins. After the interval 11 has expired, the output relay $R$ switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into off-position. The output relay is triggered at the ratio of 1 1:t2 until the supply voltage is interrupted.

T, TW Function automatic timer with (TW) or without (T) switch-off warning


After the pushbutton (control input) has been pressed, the output relay $R$ closes and the set interval t begins. If the After the pushbutton (control input) has been pressed, the outputrelay $k$ coses and the set intervalt begins. It the
pushbutton is pressed again before the interval has expired, the interval begins again (restart function complies with EN $60669-2-3$ ). Rapid, multiple pressing of the pushbutton (pumping) adds 2,3 or more time intervals to extend the time up to 60 min. Prolonged pressure on the button ( 225 ) aborts the interval running and switches
the relay off (energy saving function). In the $T W$ mode the device provides aswitch-off warning (in accordance with DIN 180 -158-2) by generating short pulses (flashing) at 305 , 15 s and 5 s prior to switch-off.

```
P, PN Impulse switch mode
```



In this mode, every keypress of the pushbutton (control input) toggles the output relay $R$ (flip-flop). In function P. In this mode, every keypress of the pushbutton (control input) toggles the output relay R (fipip-fiop). In function P,
the output relay remains in off-position, whenever the supply voltage is applied. In function PN, the output relay switches into on-position after applying the supply voltage U, if the output relay was in on-position last before power failure. In both functions the output relay switches into on-position, if a short voltage impulse ( $<25$ ) is applied to the additional control input (central 0 ). A longer voltage impulse ( $>25$ s) opens the output relay (central OFF),

P (R) Impulse switch mode with off delay


In this mode, every keypress toggles the output reay R (fip-fiop). Ater the pushbutton (control input) has been pressed, the output relay closes and the set interval t begins. Atter the interval has expired the output relay switches into off-position. If the pushbutton is pressed again before the interval has expired, the interval will be canceled and the output relay switches into off-position

| TYPE desienation | E1ZM10 | E12M20 | E1zMQ10 | E1ZMW10 | E3zM20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  | UL approval pending |  |  |  |
| Art. No. single package | $\begin{aligned} & 110100(12-240 \mathrm{~V}) \\ & 110200(24-240 \mathrm{~V}) \end{aligned}$ | 110210 | 110202 | - | 111100 |
| Art. No. package 10 pcs. | 110100A (12-240V) 110200A (24-240V) | - | 110202A | 110206A | - |
| FUNCTIONALITY | MULTIFUNCTION | multifunction | multilunction | multifunction | MULTIIUNCTION |
| E On delay | - | - | - | - | - |
| R off delay | - | - | - | - | - |
| Es On delay with control contact | $\square$ | - | $\bullet$ |  | - |
| Wu Single shot leading edge, voltage-controlled | - | - | - | - | - |
| Ws Single shot leading edge with control contact | = | - |  | - | - |
| Wa Single shot trailing edge with control contact | - | - |  | - | - |
| Bp Flasher pause first | - | - |  |  | - |
| Wt Pulse repetition analysis |  |  |  | - |  |
| WsWa Single shot leading and trailing edge with control contact |  |  |  | - |  |
| POWER SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | 12-240V AC/DC 24-240V AC/DC | 24-240V ACIDC | 24-240V ACIDC | 24-240V AC/DC | 12-240V ACIDC |
| Setting range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges |  |  | 7 |  |  |
| Setting range |  |  | $0.05 \mathrm{~s}-100 \mathrm{~h}$ |  |  |
| InPUT CIRCUIT |  |  |  |  |  |
| Control signal | - | - | - | - | - |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 CO contact | $1 \mathrm{CO}, 1 \mathrm{NO}$ contact | 1 CO contact | 1 Co contact | 1 CO contact |
| Max. switching capacity |  |  | 2000 VA (8A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates |  |  | CE, cULus, GOST |  |  |


| TYPE desicnation | E12NT | E171110 | E1z110 | E3z120 | ${ }^{337520}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORdER INFORMATİN | UL. approval pending |  |  |  |  |
| Art. No. single package | 110500 | - | 110101 | 111101 | 111300 |
| Art. No. package 10 pcs. | - | 110204A | - | - | - |
| Functionality | $\begin{aligned} & \text { EMERGENCY } \\ & \text { LIGHT TESTER } \end{aligned}$ | on delay | ASYMMETRIC FLASHER | ASYMMEIRIC FLASHER | Star delita |
| E On delay |  | - |  |  |  |
| ER On delay and off delay with control contact |  |  |  | - |  |
| EWu On delay single shot lead ing edge, voltage-controlled |  |  |  | - |  |
| Ws Single shot leading edge with testkey | - |  |  |  |  |
| EWs On delay single shot lead ing edge with control contact |  |  |  | - |  |
| Ip Asymmetric flasher pause first |  |  | - | - |  |
| Ii Asymmetric flasher pulse first |  |  | - | - |  |
| Wt Pulse repetition analysis |  |  |  | - |  |
| WsWa Single shot leading and trailing edge with control contact |  |  |  | - |  |
| 5 Star-Delta start-up |  |  |  |  | - |
| POWER SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | 230 VAC | 24 to 240V ACIDC | 12 to 240V ACIDC | 12-240V AC/DC | 12-240V AC/DC |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUITS |  |  |  |  |  |
| Time ranges | 1 | 7 | 7 | 7 | 4 |
| Setting range | 10 min-3h | $0.05 \mathrm{~s}-100 \mathrm{~h}$ | $1 \mathrm{~s}-100 \mathrm{~h}$ | 1s-100h | 0.5 s-3 min |
| INPUT CIRCUIT |  |  |  |  |  |
| Control signal | Integrated test key |  | - | - |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 co contact | 1 CO contact | 1 co contact | 2 CO contacts | 2 CO contacts |
| Max. switching capacity | NC: 4000VA (10A / 250V AC) NO: 1250VA (5A / 250V AC) | 2000 VA (8A/250V AC) | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{~V}$ AC) | 2000 VA (8A/250V AC) | 2000VA (8A / 250V AC) |
| DESICN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates | CE, GOST | CE, cULus, GOST | CE, cULus, GOST | CE, cULus, GOST | CE, cULus, GOST |


| TYPE DESIGNATION | v2zM10 | V22M10-A | v27Q10 | v2z110 | v27E10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. Screw terminal | 125100 | - | 125150 | 125200 | 125110 |
| Art. No. Push-in terminal | 125600 | - | 125650 | 125210 | 125610 |
| Art. No. Packaging unit 10 pcs. | 125100 A | 125101A | 125150A | - | 125110A |
| FUNCTIONALTY | multifunction | MULTIFUNCTION | multifunction | 2-TIME MULTIFUNCCION | ON deLay |
| E Ondelay | - | - | - |  | - |
| R off delay | - | - | - |  |  |
| Es On delay with control contact | - | - |  |  |  |
| Wu Single shot leading edge, voltage-controlled | - |  | - |  |  |
| EWu ON delay single shot leading edge, voltage-controlled |  | - |  |  |  |
| Ws Single shot leading edge with control contact | - | - |  |  |  |
| Wa Single shot trailing edge with control contact | $\underline{\square}$ | - |  |  |  |
| Bi Flasher pulse first | - | - |  |  |  |
| Bp Flasher pause first | - | - | - |  |  |
| Wt Pulse repetition analysis | - | - |  |  |  |
| Ec Additive ON Delay | $\square$ | - |  |  |  |
| 1 A Asymmetric flasher pulse first |  |  |  | - |  |
| Ip Asymmetric flasher pause first |  |  |  | - |  |
| SUPPLYCIRCUIT |  |  |  |  |  |
| Supply voltage ACIDC | 12 to 240 V | 12 to 240 V | 24 to 240 V | 12 to 240 V | 12 to 240V |
| Frequency range |  |  | $48-63 \mathrm{~Hz}$ |  |  |
| TIME CIRCUTS |  |  |  |  |  |
| Time ranges |  |  | 10 |  |  |
| Setting range |  |  | $0.05 \mathrm{~s}-100 \mathrm{~h}$ |  |  |
| InPUT CIRCUIT |  |  |  |  |  |
| Control signal | - | - | - | - |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Anzahl der Schaltkontakte |  |  | 1 CO contact |  |  |
| Max. Schatteistung |  |  | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{VAC})$ |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $22.5 \times 67 \times 76 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE, culus |  |  |
|  |  |  |  |  |  |





## Function overview

monitoring relays


| tYPe desicnation | K3PF400VSY02 | K3YM400vsY20 | K31M5AACL20 | K3UM230VAC02 | K3UM24VDC02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. | 1380301 | 1380402 | 1380202 | 1380106 | 1380107 |
| functionality | 3-phase AC voltage monitoring | 3- and 1-phase AC voltage monitoring | 1-phase AC current monitoring | 1-phase AC voltage monitoring | 1-phase AC voltage monitoring |
| 0... Over |  |  | - |  |  |
| U ... Under |  | - | - | - | - |
| W... Window |  | - | - | - | - |
| SEQ ... Phase sequence | - | - |  |  |  |
| Phase failure | - |  |  |  |  |
| ASYM ... Asymmetry | - | - |  |  |  |
| +LATCH ... Error memory |  |  | - |  |  |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | 80 to $130 \%$ of $U_{N}$ | 10 to $100 \%$ of $U_{N}$ | 80 to $120 \%$ of $U_{N}$ | 80 to $130 \%$ of $U_{N}$ |
| Minimum | - | 70 to $120 \%$ of $U_{N}$ | 5 to $95 \%$ of $U_{N}$ | 70 to $110 \%$ of U | 75 to 125\% of $U_{N}$ |
| Asymmetry | 5 to $30 \%$, OfF | 5 to $30 \%$, OfF | - | - |  |
| MEASURING CIRCuIT |  |  |  |  |  |
| Measuring variable | $\begin{gathered} 3(\mathrm{~N})- \\ A(\mathrm{~S}) \end{gathered}$ | $\underset{\substack{3(N) \sim \\ A C \text { Sinus }}}{ }$ | $\begin{aligned} & \text { Current } \\ & \text { AC Sinus } \end{aligned}$ | Voltage AC AC Sinus | Voltage AC AC Sinus |
| Measuring input | $U_{N}=400 / 230 \mathrm{VAC}$ | $U_{N}=400 / 230 \mathrm{VAC}$ | 5AAC | $U_{N}=230 \mathrm{VaC}$ | $U_{N}=24 \mathrm{VDC}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | $=$ Measuring voltage $3(\mathrm{~N})-400 / 230 \mathrm{VAC}$ $-30 \%$ to $+30 \%$ | = Measuring voltage 3(N) - 400/230V AC $-30 \%$ to $+30 \%$ | $\begin{aligned} & 230 \mathrm{VAC} \\ & -15 \% \text { to }+10 \% \end{aligned}$ | $=$ Measuring voltage 3(N)~ 400/230V AC $-30 \%$ to $+20 \%$ | $\begin{gathered} =\text { Measuring voltage } \\ 24 \mathrm{DCO} \\ -25 \% \text { to }+30 \% \end{gathered}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | - |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | - | - | 0-10s | - | - |
| Tripping delay (DELAY) | fixed, approx. 100 ms | 0.1-10 s | 0.1 -10 s | - | . |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts |  |  | 2 CO contacts |  |  |
| Max. switching capacity |  |  | $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$ |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $38 \times 51 \times 80 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE |  |  |



| type desicnation | E1YM400VS10 | E3YM230VS20 | E1UM230vo1 | E1M10AACL10 230VAC | E3LM10 230VAC |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. single package | 1340405 | 1341406 | 1340101 | 1340200 | 1341500 |
| FUNCTIONALTIY | 3- and 1-phase AC voltage monitoring | 3- and 1-phase AC voltage monitoring | 1-phase AC/DC voltage monitoring | 1-phase AC current monitoring | Level monitoring of conductive liquids |
| 0 ... Over |  |  |  | - |  |
| U ... Under | - | - | - | - |  |
| W... Window | - | - | - | - |  |
| SEQ ... Phase sequence | - | - |  |  |  |
| Phase failure |  | - |  |  |  |
| Pump up |  |  |  |  | - |
| Pump down |  |  |  |  | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | 80 to $130 \%$ of $U_{N}$ | 80 to 130\% of $U_{N}$ | 80 to 120\% of $U_{N}$ | 10 to $100 \%$ of $U_{N}$ | - |
| Minimum | 70 to $120 \%$ of $U_{N}$ | 70 to $120 \%$ of $U_{N}$ | 75 to $115 \%$ of $U_{N}$ | 5 to $95 \%$ of $U_{N}$ | - |
| Asymmetry | 5 to 25\%, OFF | - | - | - | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | $\begin{gathered} 3(N) \sim \\ A C \text { Sinus } \end{gathered}$ | $3(\mathrm{~N}) \sim$ AC Sinus | Voltage AC/DC AC Sinus | $\begin{gathered} \text { Current } \\ \text { AC Sinus } \end{gathered}$ | Liquid level via conductive probes |
| Measuring input | $U_{N}=400 / 230 \mathrm{VAC}$ | $u_{N}=230 / 132 \mathrm{VaC}$ | $24 \mathrm{VACIDC} ; 230 \mathrm{VaC}$ | 10 AAC | 0.25 to 100k $\Omega$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage <br> $3(\mathrm{~N})-4001230 \mathrm{~V}$ AC $-30 \%$ to $+30 \%$ | = Measuring voltage <br> 3(N)~ 400/230V AC $-30 \%$ to $+30 \%$ | = Measuring voltage <br> 3(N) - 400/230V AC 25\% to +20\% | $\begin{gathered} 230 \mathrm{AC} \\ -15 \% \text { to }+15 \% \end{gathered}$ | $\begin{aligned} & 230 \mathrm{VAC} \\ & -15 \% \text { to }+10 \% \end{aligned}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ or DC | $48-63 \mathrm{~Hz}$ | $48-63 \mathrm{~Hz}$ |
| TIME CIRCUITS |  |  |  |  |  |
| Tripping delay (DELAY) | 0.1-10 s | 0-30 s |  | 0.1 - 10 s | 0.5-10 s |
| off delay | - | . | - | - | 0.5-10 s |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contarts | 1 CO contact | 2 co contacts | 1 CO contact | 1 CO contact | 1 CO contact |
| Max. switching capacity |  |  | 1250VA (5A / 250V AC) |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $17.5 \times 87 \times 65 \mathrm{~mm}$ | $35 \times 87 \times 65 \mathrm{~mm}$ |
| Certificates | CE, GOST | CE, GOST | CE, cULus, GOST | CE, cULus, Gost | CE, cULus, GOST |


| TYPE DESIITNATION | V2PF480Y/277VSY01 | V2PM400Y/230VS10 | V2UM230v10 | V4PF480Y/277VSYTK02 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |
| Art. No. screw terminal | 2100000 | 2100500 | 2100300 | 2104200 |
| Art. No. push-in terminal | 2100010 | 2100510 | 2100310 | 2104210 |
| Art. No. package 10 pcs. | 2100000 A | - | - | - |
| Functionality | $\begin{aligned} & \text { 3-phase AC } \\ & \text { voltage monitoring } \end{aligned}$ | 3- phase AC voltage monitoring | 1- phase AC/DC voltage monitoring | $\begin{gathered} \text { 3- phase AC } \\ \text { voltage monitoring } \end{gathered}$ |
|  |  |  |  |  |
| U ... Under |  | - | - |  |
| W...Window |  | - | - |  |
| SEQ ... Phase sequence | - | - |  | - |
| Phase failure | - | $\bullet$ |  | - |
| ASYM ... Asymmetrie | $\square$ |  |  | - |
| Temperature monitoring (PTC) |  |  |  | - |
| SWITCHING THRESHOLD |  |  |  |  |
| Maximum | - | 75 to 130\% of $U_{N}$ | 80 to 115\% of $U_{N}$ | - |
| Minimum | - | 70 to 125\% of $U_{N}$ | 75 to $110 \%$ of $U_{N}$ | - |
| Asymmetry | 5 to $25 \%$, OFF | - | - | 5 to $25 \%$, OFF |
| MEASURING CIRCUIT |  |  |  |  |
| Measuring variable | $\underset{\text { AC Sinus }}{3 \sim}$ | $\underset{\text { AC Sinus }}{3 \sim}$ | Voltage AC/DC AC Sinus | Temperature, Voltage 3~ AC Sinus |
| Measuring input | $\begin{aligned} & \begin{array}{l} \mathrm{U}_{\mathrm{N}}=2081 / 120 \mathrm{~V} \\ \text { t } 4801277 \mathrm{~V} \end{array} \end{aligned}$ | $U_{N}=400 / 230 \mathrm{VaC}$ | 24V ACIDC; 230V AC | $\begin{aligned} & \mathrm{U}_{\mathrm{N}}=2081 / 120 \mathrm{~V} \\ & \text { to } 4801277 \mathrm{VAC} \end{aligned}$ |
| SUPPLY CIRCUIT |  |  |  |  |
| Supply voltage | $\begin{aligned} & =\text { Measuring voltage } \\ & 33-208 / 120 \\ & \text { to } 4801277 \mathrm{AC} \\ & -10 \% \text { to }+10 \% \end{aligned}$ | = Measuring voltage <br> 3(N) $-400 / 230 \mathrm{~V} \mathrm{AC}$ $35 \%$ to $+35 \%$ | $=$ Measuring voltage 24 V AC/DC; 230V AC 24V: -30\% to $+30 \%$ 230V: -30\% to +20\% | $\begin{aligned} & =\text { Measuring voltage } \\ & 3 \sim 208 / 120 \mathrm{~V} \\ & \text { to } 480 / 277 \mathrm{~V} \text { AC } \\ & -10 \% \text { to }+10 \% \end{aligned}$ |
| Frequency range | $48-63 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ or DC | $48-63 \mathrm{~Hz}$ |
| TIME CIRCUITS |  |  |  |  |
| ON DELAY | approx. 400 ms | approx. 200 ms | approx. 300 ms | approx. 500 ms |
| Tripping delay (DELAY) | $<250 \mathrm{~ms}$ | 0.1-10 s | 0.1-10 s | approx. 250 ms |
| OUTPUT CIRCUIT |  |  |  |  |
| Number of switch contacts | 1 Co contact | 1 Co contact | 1 Co contact | 2 CO contacts |
|  |  |  |  |  |
| dESIGN |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{hxd}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ |
| Certificates | CE, culus |  |  |  |


| tYpe designation | V21M10AL10 | V4IM100AL20 | V4IM35AL20 | V2TF01 | V2TF01-E |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. screw terminal | 2100400 | 2104401 | 2104402 | 2100100 | 2100101 |
| Art. No. push-in terminal | 2100410 | 2404410 | - | 2100110 | - |
| Functionality | $\begin{aligned} & \text { 1-phase AC/DC } \\ & \text { current monitoring } \end{aligned}$ | $\begin{aligned} & \text { 1-phase AC/DC } \\ & \text { current monitoring } \end{aligned}$ | $\begin{aligned} & \text { 1-phase AC/DC } \\ & \text { current monitoring } \end{aligned}$ | $\begin{gathered} \text { Temperature } \\ \text { monitoring (PTC) } \end{gathered}$ | $\begin{gathered} \text { Temperature } \\ \text { monitoring (PTC) } \end{gathered}$ |
| 0 ... Over | - | - | - |  |  |
| U ... Under | - | - | - |  |  |
| W... Window | - | - | - |  |  |
| 2MAX ... Maximum monitoring |  | - | - |  |  |
| MM ... Minimum and maximum monitoring |  | - | - |  |  |
| +LATCH ... Error memory |  | - | - |  |  |
| Temperature monitoring (PTC) |  |  |  | - | - |
| Short circuit monitoring (PTC) |  |  |  | - | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | 10 to 100\% of $\mathrm{I}_{\mathrm{N}}$ | 10 to 100\% of $\mathrm{I}_{\mathrm{N}}$ | 10 to 100\% of $\mathrm{I}_{\mathrm{N}}$ | $\geq 3.6 \mathrm{k} \Omega$ <br> (switch-off resistance) | $\geq 3.6 \mathrm{k} \Omega$ <br> (switch-off resistance) |
| Minimum | 5 to 95\% of $\mathrm{l}_{N}$ | 5 to 95\% of $\mathrm{I}_{\mathrm{N}}$ | 5 to 95\% of $\mathrm{I}_{N}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | Current AC/DC AC Sinus | Current ACIDC AC Sinus | Current ACIDC AC Sinus | Temperature | Temperature |
| Measuring input | 10A ACIDC | 100A ACIDC Built-in current transformer | 35A ACIDC Built-in current transformer | - | - |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | AC: 110 - 240 V <br> DC: 24-240V <br> AC: -15\% to $+15 \%$ <br> DC: $-30 \%$ to $+30 \%$ | 24-240V AC/DC AC: - $15 \%$ to $+10 \%$ DC: $-30 \%$ to $+30 \%$ | 24-240V AC/DC AC: - $15 \%$ to $+10 \%$ DC: $-30 \%$ to $+30 \%$ | $\begin{aligned} & 24-240 \mathrm{VAC/DC} \\ & -15 \% \text { to }+10 \% \end{aligned}$ | $\begin{gathered} 230 \mathrm{VAC} \\ -15 \% \text { to }+15 \% \end{gathered}$ |
| Frequency range | 16.6 to 400 Hz or DC | 16.6 to 400 Hz or DC | 16.6 to 400Hz or DC | 16.6 to 400 Hz or DC | 48 -63 Hz |
| TIME CIRCUITS |  |  |  |  |  |
| on delay | approx. 300 ms | approx. 300 ms | approx. 300 ms | approx. 50 ms | approx. 50 ms |
| Start-up surpression time (START) | - | 0-10 s | 0-10s | - |  |
| Tripping delay (DELAY) | 0.1 -10 s | 0.1 -10 s | 0.1 -10s | - |  |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 1 co contact | 2 CO contacts | 2 CO contacts | 1 NO contact | 1 NO contact |
| Max. switching capacity | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{VAC})$ | 2000VA (8A/250V AC) | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{VAC})$ | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{VaC})$ | $1250 \mathrm{Va}(5 \mathrm{~A} / 250 \mathrm{VAC})$ |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ | $45 \times 67 \times 76 \mathrm{~mm}$ | $22.5 \times 67 \times 76 \mathrm{~mm}$ | $22.5 \times 67 \times 76 \mathrm{~mm}$ |
| Certificates | CE, culus | CE, culus | CE, culus | CE, culus | CE |
|  |  | THIS IS A SMALL OVERVIEW OF OUR PRODUCTS FOR THE ENTIRE PRODUCT RANGE PLEASE VISIT |  |  | .tele-online.com |


| TYPE DESIINATION | G2PF400vs02 | G2PM400VSY10 G2PM400VSY20 | $\begin{aligned} & \text { G2TF01 } \\ & \text { G2TF02 } \end{aligned}$ | G2TFkN02 | G2LM20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. 1 Co contact |  | 2390500 | $\begin{aligned} & 2390102(230 V \mathrm{AC}) \\ & 2390103 \end{aligned}$ |  |  |
| Art. No. 2 co contacts | 2390000 | $\begin{aligned} & 2390504 \\ & 2390505 \end{aligned}$ | $\begin{gathered} 2390100 \\ 2390104(230 \mathrm{VAC}) \\ 2390111 \end{gathered}$ | $\begin{aligned} & 2390101 \\ & 239010 \end{aligned}$ | 2390201 (24V AC) 2390202 (110V AC) 2390200 (230V AC) |
| FUNCTIONALTY | 3 - phase AC voltage monitoring | 3-phase AC voltage monitoring | Temperature monitoring (PTC) | Temperature monitoring (PTC) | Level monitoring of conductive liquids |
| u. Under |  | - |  |  |  |
| W... Window |  | - |  |  |  |
| SEQ ... Phase sequence |  | - |  |  |  |
| Phase failure | - | - |  |  |  |
| ASYM .... Asymmetry | - | - |  |  |  |
| Temperature monitoring (PTC) |  |  | - | - |  |
| Short circuit monitoring (PTC) |  |  |  | - |  |
| Zerovoltage latch (PTC) |  |  |  | - |  |
| Test function (PTC) |  |  | - | - |  |
| Pump up |  |  |  |  | - |
| Pump down |  |  |  |  | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | -20 to $+30 \%$ of $U_{\text {N }}$ | $\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$ | $\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$ | . |
| Minimum | - | -30 to $+20 \%$ of $\mathrm{U}_{\text {N }}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | $\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$ | - |
| Asymmetry | fixed, typ. 30\% | 5 to 25\%, OFF | . | . |  |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | 3(N)~ AC Sinus | $3(\mathrm{~N}) \sim$ AC Sinus | Temperature | Temperature | Liquid level via conductive probes |
| Measuring input | $U_{N}=400 / 230 \mathrm{VAC}$ | 3(N) - 400/230V | - |  | 0.25 to 100k $\Omega$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage 3(N)~ 342V to 457V AC | 24 to 240 VCIDC or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC; 230 f fixed or selectable via power modules TR2, 5 ST2 | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | $\begin{aligned} & 24 \mathrm{VAC} \\ & 110 \mathrm{VC} \\ & 230 \mathrm{VAC} \end{aligned}$ |
| TIME CIRCUITS |  |  |  |  |  |
| Start-up surpression time (START) | fixed, max. 500 ms | - | - | - | - |
| Tripping delay (DELAY) | fixed, max. 350ms | 0.1 -10 s | - | - | 0.5-10 s |
| off delay | - | - | - | - | 0.5-10 s |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts | 1 or 2 CO contacts | 1 or 2 CO contacts | 2 CO contacts | 2 co contacts |
| Max. switching capacity |  |  | $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$ |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $22.5 \times 90 \times 108 \mathrm{~mm}$ |  |  |
| Certificates |  |  | CE, cULus, GOST |  |  |
| Please refer to the chapter accessories for detailed information and ordering data of power modules $T R 2, T R 3$ and SNT2 |  |  |  |  |  |


| type desicnation | G2PU690vs20 | G2UM300VL20 | G2IM5AL10 G2IM5AL20 | G2IM10AL10 | G2Fwa00vizo |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ORDER INFORMATION |  |  |  |  |  |
| Art. No. 1 co contact |  | - | 2390401 | 2390400 |  |
| Art. No. 2 CO contacts | 2390507 | $\begin{aligned} & 2390303 \\ & 2390304 \end{aligned}$ | 2390405 <br> 2390411 | $\begin{aligned} & 2390406 \\ & 2390410 \end{aligned}$ | 2390900 |
| functionality | 3- phase AC voltage monitoring | 1- phase AC/DC voltage monitoring | 1- phase AC/DC current monitoring | 1- phase AC/DC current monitoring | Frequency monitoring |
| 0 ... Over |  | - | - | - |  |
| U ... Under | - | - | - | - |  |
| W... Window |  | - | - | - | - |
| SEQ ... Phase sequence | - |  |  |  |  |
| Phase failure | - |  |  |  |  |
| ASYM .... Asymmetry | - |  |  |  |  |
| +LATCH ... Error memory |  | - | - | - | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Maximum | - | 10 to 100\% of $U_{N}$ | 10 to 100\% of $\mathrm{I}_{\mathrm{N}}$ | 10 to $100 \%$ of $1_{N}$ | $\begin{aligned} & F_{N}=50 \mathrm{~Hz}: 49 \text { to } 60 \mathrm{~Hz} \\ & F_{\mathrm{N}}=60 \mathrm{~Hz}: 59 \text { to } 70 \mathrm{~Hz} \end{aligned}$ |
| Minimum | 180 to 690 V | 5 to $95 \%$ of $\mathrm{U}_{\mathrm{N}}$ | 5 to 95\% of $\mathrm{l}_{\mathrm{N}}$ | 5 to 95\% of $\mathrm{l}_{N}$ | $\mathrm{F}_{\mathrm{N}}=50 \mathrm{~Hz}: 40$ to 51 Hz $\mathrm{~F}_{\mathrm{N}}=60 \mathrm{~Hz}: 50$ to 61 Hz |
| Asymmetry | fixed, 25\% | . |  |  |  |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | $\underset{\text { AC Sinus }}{3 \sim}$ | Voltage AC/DC AC Sinus | Current ACIDC AC Sinus | Current ACIDC AC Sinus | Frequency, 1-phase |
| Measuring input | $\mathrm{U}_{\mathrm{N}}=208 \mathrm{~V}$ bis 690 V | $30 / 60 / 300 \mathrm{VAC/DC}$ | 20mA/1A/5A AC/DC | 100mA/ $1 \mathrm{~A} / 10 \mathrm{~A}$ AC/DC | $110-400 \mathrm{VaC}$ |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | = Measuring voltage 3~ 177V to 794V | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240 V AC/DC or selectable via power modules TR2, SNT2 | 24 to 240 V ACIDC or selectable via power modules TR2, SNT2 | 24 to 240V ACIDC |
| TIME CIRCUITS |  |  |  |  |  |
| on delay | - | - | - | - | 0-10s |
| Start-up surpression time (START) | - | 0-10s | 0-10s | 0-10s | . |
| Tripping delay (DELAY) | 0.1 -10s | 0.1-10 s | $0.1-10 \mathrm{~s}$ | $0.1-10$ s | 0.1-10 s |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Number of switch contacts | 2 CO contacts | 2 co contacts | 1 or 2 CO contacts | 1 or 2 CO contacts | 2 CO contacts |
| Max. switching capacity |  |  | $1250 \mathrm{Va}(5 \mathrm{~A} / 250 \mathrm{VaC})$ |  |  |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $22.5 \times 90 \times 108 \mathrm{~mm}$ |  |  |
| Certificates | CE, cULus, GOST | CE, culus, gost | CE, cULus, GOST | CE, cULus, GOST | CE |
| Please refer to the chapter accessories for detailed information and ordering data of power modules TR2, TR3 and SNT2 |  |  |  |  |  |

## Load monitors

回
Monitoring of electronic motors

TELE load monitoring systems offer significant advantages,
particularly in situations in which monitoring tasks are usually carried out by sensors:

No problems due to contamination and any decalibration of the sensors

- No maintenance and cleaning costs
- Easy to use, even in charged air or volatile substances
- Savings in terms of cabling
- No use of explosion-proof barriers necessary

1. Reduction in error sources

- Simple retrofitting

Current monitoring relays
Pure current measurements in the supply to motors can only be used in an extremely restricted capacity to monito and

1) In alternating current circuits, the measured current is apparent current. This total current comprises the sum of reactive and active current components. However when generating mechanical power it is the active
current that is exclusively decisive. The reactive current merely causes losses and does not contribute to the shaft power delivered.
2) In an underload range the current does not reduce in a linear manner with the load but instead remains relatively high due to the necessary magnetisation current. Therefore, between current and load.
3) The current is dependent on the supply voltage. An undervoltage condition with a constant load can result monitoring the pure active current too.
Thus, monitoring pure current is only applicable in extreme operating conditions, such as a drive blockage, because the
current rises dramatically in such cases.
-oad monitoring systems with power factor measurement (cos $\varphi$, angle between the current drawn and the voltage applied. In electrical motors this is dependent on the loading and theoretically equals 1 in an ideal case. However, due to induction it effectively lies within a range of 0.85 to 0.95 with
a nominal load.

In an underload range, the $\cos \varphi$ monitor is extremely significant because the proportion of losses at a lower load increases dramatically and results in a $\cos \varphi$ of up to $<0.5$ in an idle state. This is not applicable around the zero poin and in an overload range because load changes only resut in minimal changes to the phase shift angle $\varphi$.

The effective power measurement facilitas obtaine most precise feedback regarding the state of an electrical motor because the effective power is proportional to the shaft power. A direct correlation exists between the effective power supplied and the motor loading (torque with constant rotational speed) across the entire working range.


Examples for Load Monitor-Usage:

- Trash Compactor: Under- and overload monitoring of motor drives of screw compactor or hydraulic pumps and control of refilling.
Crusher: Under- and overload monitoring of motor
drives and control of refiling drives and control of refilling.
- Mixers: Under-and overload monitoring of motor drives.

Conveyor belts: Under-and overload monitoring of motor drives of conveyor belts and control of refiling.

- Ventilation systems: Under- and overload monitoring of motor drives of ventilators.
- Machine tools: Under- and overload monitoring of
motor drives of machining tools, coolant pumps, swarf conveyors and control option of feed unit.
Bridge and portal cranes: Overload monitoring of hoist motors.
- Centrifugal and piston pumps: Under- and overload monitoring of pump motors and control of flow rate.

| type desicnation | G2CM400V10AL20 | G2BA400V12A 4-20MA G2BA400V12A 0-10V | G2BM400V12AL10 G2BM400V12AFL10 | G4BM690V16AL20 | G4BM480V12ADTL20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Art. No. | 2390602 | 2390705 <br> 2390708 | $\begin{aligned} & 2390700 \\ & 2390702 \end{aligned}$ | 2394721 | 2394706 |
| FUNCTIONALTY | $\operatorname{COS} \varphi$ power factor in 1- or 3-phase mains | Active power transducer in 1- or 3-phase mains | True power monitoring in 1- or 3-phase mains | True power monitoring in 1- or 3-phase mains | True power monitoring in 1- or 3-phase mains |
| 0 ... Overload monitoring | - |  | - |  | - |
| U ... Underload monitoring | - |  | - |  | - |
| w... Window | - |  |  |  | - |
| 2MIN ... Minimum monitoring |  |  |  | - | - |
| 2MAX ... Maximum monitoring |  |  |  | - | - |
| MIN/MAX ... Minimum- and maximum monitoring |  |  |  | - | - |
| +LATCH ... Error memory | - |  | - | - | - |
| I = O DETECTION ... Recognition of disconnected consumers |  |  | - | - | - |
| Temp ... Temperature monitoring of the motor winding |  |  | - | - | - |
| SWITCHING THRESHOLD |  |  |  |  |  |
| Zero... Zero point | - | $0 \%, 25 \%, 50 \%$ and $75 \%$ of nominal value | - | - | - |
| Zero Fine ... Fine setting zero point | - | $0-25 \%$ of nominal value | - | - | - |
| Span ... Measuring span | - | $100 \%, 75 \%, 50 \%$ and $25 \%$ of nominal value | - | - | - |
| Threshold P / P1 | $\cos \varphi$ Max: 0.2-1.0 | - | 5 to $120 \%$ of $\mathrm{P}_{\mathrm{N}}$ | 10 to 120\% of $\mathrm{P}_{N}$ | 2.5kW: 120W to 2490W 10kW: 480W to 9960W |
| Threshold P2 | $\cos \varphi$ Min: $0.1-0.99$ | - | - | 5 to $110 \%$ of $\mathrm{P}_{\mathrm{N}}$ | - |
| MEASURING CIRCUIT |  |  |  |  |  |
| Measuring variable | Power factor $(\cos \varphi)$, 1- or 3-phase loads AC Sinus | $\begin{aligned} & \text { True power, } \\ & \text { 1- or 3-phase loads } \\ & \text { AC Sinus } \end{aligned}$ | $\begin{aligned} & \text { True power, } \\ & \text { 1- or 3-phase loads } \\ & \text { AC Sinus } \end{aligned}$ | $\begin{aligned} & \text { True power, } \\ & \text { 1- or 3-phase loads } \\ & \text { AC Sinus } \end{aligned}$ | $\begin{aligned} & \text { True power, } \\ & \text { 1- or 3-phase loads } \\ & \text { AC Sinus } \end{aligned}$ |
| Measuring range | 0.1 to 1 | $\begin{aligned} & 0.7 \mathrm{~kW} \cdot 1.5 \mathrm{~kW} \cdot \mathrm{3kW} \cdot \\ & 6 \mathrm{~kW} \end{aligned}$ | 0.5kW•1kW $\cdot 2 \mathrm{~kW} \cdot 4 \mathrm{~kW}$ | $2 \mathrm{~kW} \cdot 4 \mathrm{~kW} \cdot 8 \mathrm{~kW} \cdot 16 \mathrm{~kW}$ | $2.5 \mathrm{~kW} \cdot 10 \mathrm{~kW}$ |
| Measuring input voltage | 40 to 415 V AC (single-phase) 40/23 to 415/240V (3 ~) | $\begin{gathered} 0 \text { to } 480 \mathrm{VAC} \\ \text { (single-phase) } \\ 0 \text { to } 480 / 277 \mathrm{~V}(3 \sim) \end{gathered}$ | $\begin{gathered} 0 \text { to } 230 \mathrm{~V} \text { AC } \\ \text { (single-phase) } \\ 0 \text { to } 415 / 240 \mathrm{~V}(3 \sim) \end{gathered}$ | $\begin{gathered} 42 \text { to } 690 \mathrm{~V} \text { AC } \\ \text { (single-phase) } \\ 42 \text { to } 690 / 400 \mathrm{~V}(3 \sim) \end{gathered}$ | $\begin{gathered} 0 \text { to } 480 \mathrm{~V} \text { AC } \\ \text { (single-phase) } \\ 0 \text { to } 480 / 277 \mathrm{~V}(3-) \end{gathered}$ |
| Overload capacity voltage | 500 VAC (single-phase) 500/289V (3~) | 550 VAC (single-phase) 550/318V (3~) | 300 VAC (single-phase) 500/289V (3~) | 796 V AC (single-phase) 796/460V (3~) | 550 VAC (single-phase) 550/318V (3~) |
| Measuring input current | 0.5 to 10A | 0 to $6 \mathrm{~A}(0.6$ and 1.2 kW$)$ 0 to 12 A (2.4 and 4.8 kW ) | 0 to $6 \mathrm{~A}(0.5$ and 1 kW ) 0 to 12 A (2 and 4kW) | 0.2 to $8 \mathrm{~A}(2$ and 4 kW ) 0.4 to 16A (8 and 16kW) | 0.15 to $6 \mathrm{~A}(2.5 \mathrm{~kW})$ 0.3 to $12 \mathrm{~A}(10 \mathrm{~kW})$ |
| Overload capacity current | 11 A permanent | 12 A permanent | 12 A permanent | 18 A permanent | 12 A permanent |
| SUPPLY CIRCUIT |  |  |  |  |  |
| Supply voltage | Selectable via power module TR2 | 24-240V DC; 48-240V AC | Selectable via power module TR2 | Selectable via power module TR2 | 24-240V ACIDC |
|  |  |  |  |  |  |
| Start-up surpression time (START) | 1-100 s | - | $\begin{aligned} & 1-100 \mathrm{~s}(\mathrm{ALL10}) \\ & 0.1-2 \mathrm{~s}(\mathrm{AFL} 10) \end{aligned}$ | 1-100 s | 0-100 s |
| Tripping delay (DELAY) | 0.1-40 s | - | $\begin{aligned} & 0.1-50 \mathrm{~s} \text { (AL10) } \\ & 0.1-2 \mathrm{~s}(\mathrm{AFL10)} \end{aligned}$ | 0.1 -50 s | 0.1 -50 s |
| InPUT CIRCUIT |  |  |  |  |  |
| Control input | - | - | Y1-Y2 (Latch) | Y1-Y2 (Latch) | Y1-Y2 (Latch) |
| OUTPUT CIRCUIT |  |  |  |  |  |
| Analog output | - | 4-20mA (Burden: max. $500 \Omega$ ) $0-10 \mathrm{~V}$ (Burden: min. $3 \mathrm{k} \Omega$ ) | - | - | - |
| Number of switch contacts | 2 CO contacts |  | 1 CO contact | 2 CO contacts | 2 CO contacts |
| Max. switching capacity | $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$ |  | $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$ | 1250 VA ( $5 \mathrm{~A} / 250 \mathrm{VAC}$ ) | $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VaC})$ |
| DESIGN |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $45 \times 90 \times 108 \mathrm{~mm}$ | $45 \times 90 \times 125 \mathrm{~mm}$ |
| Certificates | CE, cULus, GOST | CE, GOST | CE, cULus, GOST | CE, cULus, GOST | CE, cULus, GOST |
| Please refer to the chapter accessories for detailed information and ordering data of power modules TR2, TR3 and SNT2 |  |  |  |  |  |

## Grid and system protection

Autonomously working disconnecting point for private small power plants

Why? Small power plants must be disconnected from the grid mmediately in the event of a network shutdown or netwo disruption to avoid any danger to people and equipment.
Function: An automatic disconnection device monitors the feed-in of energy to the $230 / 400 \mathrm{~V}$ grid. In case of a powe failure or disruptions by the energy supplier it is vital for smal power plants to be disconnected within a few milseconis.
Monitoring the voltage and frequency and recognizing Monitoring offe) voltage and frequency and recogits any automatic disconnection device.

Requirement: Converting renewable energy into electricity is a key element of stabilising the global climate. In the contex of small and micro power plants we mainly see photovoltaic installations, small wind power generators, cogeneration plants or small hydropower plants being used. The energ produced in this way is used to cover own consumption
needs, or fed into the public grid to generate a profit To needs, or fed into the public grid to generate a profit. To transfer between small power plants and the grid of the energy supplier (ES). Large power plants are managed and monitored directly by the ES using telecontrol engineering This is too expensive and therefore uneconomical for the many private producers of electricity
In the event of a power cut or a disruption in the grid of the energy supplier, small private power plants immediately have to be disconnected from the public grid to prevent unwanted feed-in.
Failure to disconnect from the grid without delay pus maintenance personnel at risk, while consumers can also
be exposed to improper voltages and frequencies. The be exposed to improper voltages and frequencies. The by an automated interface. Small power plants have to be equipped with an automatic isolation unit that is checked and permitted by an accredited body. Country-specific norms define how the interface should be realised and checked in detail. To meet the requirements of the standards and o the energy supply companies, the market offers solutions as integrated solutions. The thresholds can even be adjusted outside the standard values if required by the network operator. Functionally safe devices also fulfil the monitoring
function in the event of faults, recognise these faults and ensure a safe operating conditio.
TELE's wide range of products offers an optimal solution for any country and any requirement.



| TYPE designation | NA003 |
| :---: | :---: |
| ORDER INFORMATION |  |
| Art. No. | 2700000 |
| FUNCTIONALITY |  |
| Implemented standards | CEI 0-21 (Italy) <br> VDE V 0126-1-1 (Turkey, Belgium, France, Greece, ...) <br> VDE-AR-N 4105 - tested in accordance with VDE V 0124-100 (Germany, ...) <br> G59/3 (Great Britain - low voltage) <br> G59/3 (Great Britain - medium voltage) <br> G83/2 (Great Britain) <br> C10-11 (Belgium - low voltage) <br> C10-11 (Belgium - medium voltage) <br> TR3, TR8 - certified in accordance with BDEW 2008 (Germany - medium voltage) OENorm E 8001-4-712 (Austria) <br> EN50438 (Europe) <br> EN50438 Denmark <br> Open setup |
| Measuring variable | phase to phase voltage, phase to neutral voltage, 10 minute voltage average, frequency, frequency change (RoCoF), Phase shift (PShift) |
| Measuring range | phase to phase voltage: $0 \ldots 560 \mathrm{VAC}$, phase to neutral voltage: $0 \ldots 325 \mathrm{VAC}$ frequency: $40 \ldots 60 \mathrm{~Hz}$, RoCoF $100 \mathrm{mHz} / \mathrm{s} . . .2 .000 \mathrm{mHz} /$ s, Pshift $1 . . .15^{\circ}$ |
| Monitoring functions | $2 \times$ phase to neutral overvoltage, $2 \times$ phase to neutral undervoltage <br> $2 \times$ phase to phase overvoltage, $2 \times$ phase to phase undervoltage <br> $1 \times 10$ minutes voltage average (over) <br> $4 \times$ overfrequency, $4 \times$ underfrequency, $1 \times$ random overfrequency $1 \times$ RoCoF (over), $1 \times$ PShift (over) <br> (over) |
| Features | Each turn-off threshold is associated with its own turn-off time Fixed turn-on time, random turn-on time Configurable evaluation of the feedback contact Enable / Disable functions via digital inputs Enable / Disable functions via selectable operational mode 4 different connection and measuring modes: <br> 2 wire (single phase L1, N), 3 wire ( 3 phase without N), <br> 4 wire ( 3 phase LL only), 4 wire ( 3 phase LL + LN) <br> Configurable nominal voltage <br> Functional safety <br> Password protection and ability to seal <br> Error memory with time stamp (entries) |
| Supply voltage | $\begin{gathered} 24 \mathrm{VCD} \pm 10 \%, \\ 110 . .240 \mathrm{VAC} \pm 30 \% \end{gathered},$ |
| Rated frequency | 50/60Hz or DC |
| Tolerance of rated frequency | 48...63Hz |
| Output circuit | 3 CO contacts 5A, 250V AC (1250VA) |
| Digital inputs | 5 inputs for potential free contacts (24V/5mA) |
| desicn |  |
| Dimensions ( $\mathrm{w} \times \mathrm{hx} \mathrm{d}$ ) | $106.3 \times 90.5 \times 62$ |



## Characteristics of a good grid and system protection device:

- Functional safety
- Voltage drop protection; overvoltage protection; monitoring of voltage quality
- Frequency drop protection; Frequency rise protection
- Detection of off-grid operation by phase voltage monitoring, RoCoF (rate of change of frequency) and/or vector shif
- Non-volatile fault latch
- Random turn-off thresholds and turn-on times for non-controllable energy producers (e.g. combined heat and power plant (CHP))
- Wide rated voltage and rated frequency range (up to 60 Hz ) adjustable rated voltage
Power supply from grids with up to $35 \%$ overvoltage (312V AC
- Free, practically unlimited parametribility

Software update option in the field, upgradable communication interface

- Monitoring of 1 and 3 phase grids (with and without N )

| type designation | G4PF33-1 | G4PF21-1 | G2VFr2013 | G2FW50HzYFAO2 |
| :---: | :---: | :---: | :---: | :---: |
| Certification / Standard | VDE-AR-N 4105 | CEI O-21 | VDE VOT26-1-1 VFRR2013 | VDE V 0126-1-1 |
| Country | Germany and others | Italy | France | Greece and others |
| Measurement parameter | Voltage 3-phase AC, frequency |  |  |  |
|  |  |  |  |  |
| Art. No. | 2394512 | 24V DC: 2394516 230V AC: 2394513 400V AC: 2394514 | 2390913 | 2390910 |
| Certificate of conformity | - | - |  |  |
| functions |  |  |  |  |
| Voltage monitoring | Voltage fall \& rise voltage protection |  |  |  |
| Frequency monitoring | Frequency fall \& rise protection |  |  |  |
| Fault latch | - | - |  |  |
| Passive islanding | - |  |  |  |
| Detection | 60 s-10 min | 0-300 s | fixed, 30 s | fixed, 30 s |
| On-delay | see datasheet |  |  |  |
| off.delay | - |  |  |  |
| Single fault tolerance |  |  |  |  |
| Digital user interface including password protection | - | - |  |  |
| SUPPLY CIRCUIT |  |  |  |  |
| Supply voltage | 230 VAC | $\begin{aligned} & 24 \mathrm{VDC}, 230 \mathrm{~V} \mathrm{AC}, \\ & 400 \mathrm{~V} \text { AC } \end{aligned}$ | selectable via power modul TR2 $^{\text {a }}$ |  |
| Rated frequency | 50 Hz |  |  |  |
| MEASURING CIRCUIT |  |  |  |  |
| 10 minute average value | 110 to 115\% of $\mathrm{U}_{\mathrm{N}}$ |  |  |  |
| Voltage monitoring Max | fixed, 115\% of $U_{N}$ | see datasheet | fixed, $115 \%$ of $U_{N}$ | fixed, $115 \%$ of $\mathrm{U}_{\mathrm{N}}$ |
| Voltage monitoring Min | fixed, $80 \%$ of $U_{N}$ |  | fixed, $80 \%$ of $\mathrm{U}_{\mathrm{N}}$ | fixed, $80 \%$ of $U_{N}$ |
| Frequency monitoring Max | 50.2 to 51.5 Hz |  | fixed, 50.4 Hz | fixed, 50.2 Hz |
| Frequency monitoring Min | fixed, 47.5 Hz |  | fixed, 47.5 Hz | fixed, 47.5 Hz |
| output CIRCuIT |  |  |  |  |
| Number of switch contacts | 2 galvanically seperated CO contacts (potential-free) |  | 2 CO contacts (potential-free) |  |
| Max. switching capacity | 1250 VA ( $5 \mathrm{~A} / 250 \mathrm{~V}$ AC) |  |  |  |
| desicn |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $45 \times 90 \times 125 \mathrm{~mm}$ | $45 \times 90 \times 125 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ | $22.5 \times 90 \times 108 \mathrm{~mm}$ |
| Certificates | CE |  |  |  |
| Please refer to the chapter acces | r detailed information a | g data of power modu | TR3 |  |

## Accessories

For our timing- and monitoring relays as well as our load monitors and grid and system protection we offer the following accessories.



Monitoring relays


Load monitors


Grid and system
protection

Mounting plate MP
for fixing TELE devices on a mounting plate or wall

mp

Probes - SK series
for monitoring level of conductive liquids


Front cover FA-G2
for GAMMA monitoring relays (width 22.5 mm )


## Complementary products

In addition to our product range we also offer the following complementary products:

| Signal converter | - Signalamplifier series: M1 <br> - Loop-powered isolator series: M1 | Page 35 |
| :---: | :---: | :---: |
| Current transformers | - Baffle-type current transformer series: WSW <br> - Bar-type current transformer series: DSW | Page 35 |
| Coupling units | - Coupling relays series: ENYA <br> - Automatic-Manual-OFF relay series: OCTO <br> - Analogue data encoder series: OCTO <br> - Levelswitch series: OCTO | Page 36 |
| Switching relays Sets Accessoires | - Interface Relays series: STKR and SKR <br> - Multifunction time modul series: COMBI <br> - Miniature Relays series: RA and RM <br> - Industrial Relays series: RT <br> - PCB Relays series: RP | $\begin{aligned} & \text { Page } 37 \\ & \text { Page } 38 \end{aligned}$ |
| Softstarter <br> Braking units <br> Thyristor control units | - Softstarter series: TSG/MSG, EUROSTART and ESG <br> Braking units series: MBG, BG <br> - Thyristor control units series: TST, ESGT | Page 39 <br> Page 40 <br> Page 41 |
| Hour meters Digital time switches Countdown timer | Hour meters series: TBG and TBW <br> - Digital time switches series: TSC <br> - Countdown timers series: TTC | Page 42 |
| Safety relays | - Safety relays series: $\mathrm{s}^{2}$ | Page 43 |
| DC power supplies | - Switching power supplies | Page 44 |



| TYPE DESTCNATION |
| :--- |

SKR, STKR series and accessories coupling relays - PLC applications

| type desicnation | function | Rated | Ltage | RELAY VOLTAGE | NUMBER OF SWITCH ING CONTACTS | ART. No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKR 524 | Coupling relay for PLC applications | 24 V | ACIDC |  | 1 CO contact | 180501 |
| SKR 024 |  | 24 V | dC |  |  | 180500 |
| SKR 730 |  | 230 V | AC |  |  | 180502 |
| STKR 524 | Coupling relay for PLC applications with pluggable changeover relay | 24 V | ACIDC | 24 VC |  | 180504 |
| STKR 024 |  | 24 V | DC | 24 VCO |  | 180503 |
| STKR 730 |  | 230 V | AC | 60V DC |  | 180505 |
| RM699V-3011-85-1024 | $\begin{gathered} \text { Pluggable } \\ \text { changeover relay } \end{gathered}$ | 24 V | DC |  |  | 100660 |
| RM699V-3011-85-1060 |  | 48 V | DC |  |  | 100661 |
| ACCESSORIES | function |  |  | colour | number of poles |  |
| PB-B SKR | Jumper link |  |  | Blue | 20 | 180535 |
| PB-R SKR |  |  |  | Red |  | 180536 |

RA, RM series miniature relays / RP series PCB relays


| type desicnation | rated voltage |  | LED | GOLD-PLATED contacts | NUMBER OF SWITCH: ing contacts | ART. No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RA 524L-N | 24 V |  | - |  |  | 100623LD-N |
| RA 615 L-N | 115 V | AC | - |  |  | 100621LD-N |
| RA 730L-N | 230 V |  | - |  | 2 CO contacts | 100624LD-N |
| RA 012L-N | 12 V | DC | - |  |  | 100625LD-N |
| RA 024L-N | 24 V |  | - |  |  | 100622LD-N |
| RM 512L-N | 12 V |  | - |  |  | 100612LD-N |
| RM 524L-N | 24 V | AC | - |  |  | 100613LD-N |
| RM 615L-N | 115 V |  | - |  |  | 100618LD-N |
| RM 730L-N | 230 V |  | - |  | 4 CO contacts | 100619LD-N |
| RM 012L-N | 12 V |  | - |  |  | 100601LD-N |
| RM 024L-N | 24 V | DC | - |  |  | 100603LD-N |
| RM 048L-N | 48 V |  | - |  |  | 100602LD-N |
| RM 220L-N | 220 V |  | - |  |  | 100620LD-N |
| RP 524-1 | 24 V | AC |  |  |  | 100431 |
| RP 730-1 | 230 V |  |  |  | 1 CO contacts | 100432 |
| RP 024-1 | 24 V | DC |  |  |  | 100430 |
| RP 524-2 | 24 V | AC |  |  |  | 100417 |
| RP 730-2 | 230 V |  |  |  |  | 100418 |
| RP 012-2 | 12 V |  |  |  | 2 CO contacts | 100420 |
| RP 024-2 | 24 V | DC |  |  |  | 100416 |
| RP 024-hv | 24 V |  |  | - |  | 100416H |

RT series industrial relays


| TYPE <br> designation | FUNCTIONS | TIME RANG | SUPPLY VOLTA | NUMBER OF SWITCHING CONTACTS | $\begin{aligned} & \text { DIMENSIONS } \\ & \text { (W X H X D) } \end{aligned}$ | ART. No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Сом3т | $\stackrel{8}{\mathrm{E}, \mathrm{R}, \mathrm{Ws}, \mathrm{Wa}, \mathrm{Wu}, \mathrm{Es}, \mathrm{Bp}, \mathrm{Bi}}$ | $\begin{gathered} 8 \\ (0.05 \mathrm{~s}-10 \mathrm{~d}) \end{gathered}$ | 24-240V AC/DC | 2 or 3 CO contacts (according to | $35 \times 12 \times 47 \mathrm{~mm}$ | 237010 |

Sockets for switching relays

| TYPE desicnation | FOR SERIES | Rated voltage |  | ART. No. |
| :---: | :---: | :---: | :---: | :---: |
| PYF148E (ES 15/4N) | RA, RM | 300 V | AC | 180134 |
| PYF148E3 (ES 15/4) |  |  |  | 180145 |
| PYF14BE3CC (ES 15/4G) |  |  |  | 180148 |
| ES 15/4b |  |  |  | 180046 |
| RSS214 | RM |  |  | 180050 |
| PI50BE/3R (ES 50/3) | RP |  |  | 180150 |
| P150BE/3-CC (ES50/3G) |  |  |  | 180149 |
| P150BE (ES 50) |  |  |  | 180137 |
| PS58/3 |  |  |  | 180056 |
| Pf083BE (E58) | RT 8-pin |  |  | 180139 |
| ES9 |  |  |  | 180041 |
| PF1 138EM (ES12) | RT 11-pin |  |  | 180136 |
| R11X |  |  |  | 180055 |



Modules and accessories for switching relays


TsG

msG

ms3


ESG

| TYPE desicnation | MOTOR CONTROL | NOMINAL CURRENT | NOMINAL MOTOR POWER | dimensions | ART.No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MS3 2,2 | 3 -phase | 4.5A | 2.2kW | $42 \times 128 \times 130 \mathrm{~mm}$ | 490460 |
| MS3 3,0 |  | 6.6 A | 3.0 kw | $42 \times 128 \times 130 \mathrm{~mm}$ | 490461 |
| MS3 4,0 |  | 8.5A | 4.0kw | $42 \times 128 \times 130 \mathrm{~mm}$ | 490462 |
| MS3 5,5 |  | 12A | 5.5kw | $42 \times 128 \times 130 \mathrm{~mm}$ | 490463 |
| MS37,5 |  | 18A | 7.5kw | $51 \times 141 \times 181 \mathrm{~mm}$ | 490464 |
| MS3 11,0 |  | 25A | 11 kW | $51 \times 141 \times 181 \mathrm{~mm}$ | 490465 |
| MS3 15,0 |  | 30A | 15kw | $51 \times 224 \times 179 \mathrm{~mm}$ | 490466 |
| MS3 18,5 |  | 37A | 18.5kW | $51 \times 224 \times 179 \mathrm{~mm}$ | 490467 |
| MS3 22,0 |  | 45A | 22kw | $51 \times 224 \times 179 \mathrm{~mm}$ | 490468 |


| type disicnation | TYPE DESCRIPION | for sockets series | FOR SWITCHING RELAVS SERIIS | Rated voltage | ART. No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M21N | Diode | PYF | RA, RM | $6-230 \mathrm{VDC}(+\mathrm{Al})$ | 180261 |
| M41R | LED (red) + Diode | PYF | RA, RM | $6-24 \mathrm{VDC}\left(+\mathrm{Al}^{\text {) }}\right.$ | 180263 |
| em 12 | LED (green) + Diode | RSS214 | RM | $6-24 \mathrm{VDC}\left(+\mathrm{Al}^{\prime}\right.$ | 180309 |
| ем 03 | RC-IInk | RSS214 | RM | 110-230V AC | 180300 |
| TYPE41 (TVL1) | LED + Diode | PF113BEM | ${ }^{\text {RT }}$ | $6-24 \mathrm{VDC}\left(+\mathrm{Al}^{\prime}\right.$ | 180232 |
| HB/RM-RA | Retaining Clip (metal) | RSS214, ES15, PYF | RA, RM |  | 180032 |
| HB/ES15 | Retaining Clip (plastic) | ES15, PYF | RA, RM |  | 180153 |
| HB/RT | Retaining Clip (metal) | PF083BE, PF113BEM, Es9, R11X | ${ }^{\text {RT }}$ |  | 180043 |
| HB/RP 16 | Retaining Clip (plastic) | P150 | RP |  | 180029 |
| HB/PSS | Retaining Clip (plastic) | PS58/3 | RP |  | 180060 |
| BS/PSS | Front cover (label field) | PS58/3 | RP |  | 180057 |


| tYpe designation | MOTOR CONTROL | NOMINAL CURRENT | NOMINAL MOTOR POWER | dimensions | Art.no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ESG 30-400 | 3-phase without current limitation | 240 A | 30kw | $360 \times 250 \times 170 \mathrm{~mm}$ | 490055 |
| ESG 45-400 |  | 350 A | 45kw | $360 \times 250 \times 170 \mathrm{~mm}$ | 490065 |
| ESG 55-400 |  | 420 A | 55kw | $360 \times 250 \times 170 \mathrm{~mm}$ | 490070 |
| ESG 75-400 |  | 600 A | 75kw | $360 \times 250 \times 170 \mathrm{~mm}$ | 490075 |
| ESG 90-400 |  | 700 A | 90kW | $360 \times 250 \times 170 \mathrm{~mm}$ | 490080 |
| ESG-1 30-400 | $\begin{gathered}3 \text {-phase } \\ \text { with current limitation }\end{gathered}$ | 240 A | 30kW | $360 \times 250 \times 170 \mathrm{~mm}$ | 490056 |
| ESG-145-400 |  | 350 A | 45kW | $360 \times 250 \times 170 \mathrm{~mm}$ | 490067 |
| ESG-155-400 |  | 420 A | 55kW | $360 \times 250 \times 170 \mathrm{~mm}$ | 490072 |
| ESG-175-400 |  | 600 A | 75kW | $360 \times 250 \times 170 \mathrm{~mm}$ | 490076 |
| ESG-190-400 |  | 700 A | 90kw | $360 \times 250 \times 170 \mathrm{~mm}$ | 490081 |
| AdDITIONAL OPTIONS |  |  | SCRIPTION |  | ART. No. |
| /BG ESG | Braking module (ESG 30kW and higher) |  |  |  | A50019 |
| 124VDC ESG | Control voltage; 24V DC |  |  |  | AS0020 |
| /400VAC ESG | Control voltage; 400V AC |  |  |  | AS0021 |


| TYPE designation | MAX. Braking current | RECOMMENDED MOTOR POWER | dimensions | Art. no. |
| :---: | :---: | :---: | :---: | :---: |
| MBG10 230V AC | 10A | 2.2kW | $76 \times 45 \times 117 \mathrm{~mm}$ | 499110 |
| MBG20 400V AC | 20A | 5.5kw | $70 \times 101 \times 117 \mathrm{~mm}$ | 499111 |
| mbg35 400V AC | 35A | 11 kw | $101 \times 101 \times 117 \mathrm{~mm}$ | 499112 |



| type desicnation | max. braking current | RECOMMENDED MOTOR POWER | dimensions | ART.No. |
| :---: | :---: | :---: | :---: | :---: |
| BG $20 / 400$ | 18A | 4 kW | $200 \times 140 \times 115 \mathrm{~mm}$ | 499950 |
| BG 60 | 60A | 15kW | $260 \times 195 \times 170 \mathrm{~mm}$ | 49982 |
| BG 100 | 100 A | 22kW | $260 \times 195 \times 170 \mathrm{~mm}$ | 49988 |
| BG 150 | 150 A | 30kw | $260 \times 195 \times 170 \mathrm{~mm}$ | 49983 |
| BG 220 | 220 A | 55kw | $260 \times 195 \times 170 \mathrm{~mm}$ | 49984 |
| BG 300 | 300 A | 75kW | $260 \times 195 \times 170 \mathrm{~mm}$ | 49995 |

TST series thyristor control unit (compact design)

| TYPE desicnation | LOAD | max. Load current | dimensions | ART. No. |
| :---: | :---: | :---: | :---: | :---: |
| TST1 05 | 1-phase | 5 A | $93 \times 130 \times 103 \mathrm{~mm}$ | 499996 |
| TST1 15 |  | 15A | $93 \times 130 \times 103 \mathrm{~mm}$ | 49999 |
| TST1 25 |  | 25A | $93 \times 130 \times 103 \mathrm{~mm}$ | 499992 |
| TST1 35 |  | 35A | $93 \times 130 \times 103 \mathrm{~mm}$ | 49993 |
| TST1 50 |  | 50A | $93 \times 130 \times 103 \mathrm{~mm}$ | 49999 |
| TST1-SP 05 |  | 5A | $93 \times 130 \times 103 \mathrm{~mm}$ | 4999965 |
| TST1-SP 15 |  | 15A | $93 \times 130 \times 103 \mathrm{~mm}$ | 4999915 |
| TST1-SP 25 |  | 25A | $93 \times 130 \times 103 \mathrm{~mm}$ | 4999925 |
| TST1-SP 35 |  | 35A | $93 \times 130 \times 103 \mathrm{~mm}$ | 4999935 |
| TST1-SP 50 |  | 50A | $93 \times 130 \times 103 \mathrm{~mm}$ | 4999945 |
| TST3 $053 \times 400 / 230 \mathrm{~V}$ | $\begin{aligned} & \text { 3-phase } \\ & \text { 3- or 4-wire system } \end{aligned}$ | 5A | $140 \times 200 \times 135 \mathrm{~mm}$ | 499053 |
| TST3 $153 \times 400 / 230 \mathrm{~V}$ |  | 15A | $140 \times 200 \times 135 \mathrm{~mm}$ | 499050 |
| TST3 $253 \times 400 / 230 \mathrm{~V}$ |  | 25A | $140 \times 200 \times 135 \mathrm{~mm}$ | 499051 |
| TST3 35 3x400/230V |  | 35A | $140 \times 200 \times 135 \mathrm{~mm}$ | 499052 |
| TST3 $503 \times 400 / 230 \mathrm{~V}$ |  | 50A | $140 \times 200 \times 135 \mathrm{~mm}$ | 499054 |
| AdDITIONAL OPTIONS | DESCRIPTION |  |  | ART. No. |
| IV 230Vac TST1 | Internal power supply 230 V AC |  |  | A50029 |
| IV 400VAC TST1 | Internal power supply 400V AC |  |  | A50033 |
| $1400 \mathrm{VAC} \mathrm{TST3}$ | Internal power supply 400V AC ( | egrated in the device) |  | A50032 |


| tYpe desicnation | LOAD | MAX. LOAD CURRENT | DIMENSIONS | ART. No. |
| :---: | :---: | :---: | :---: | :---: |
| ESGT 75 | 3-phase, 3- or 4-wire system | 75A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490218 |
| ESGT 90 |  | 90A | $360 \times 252 \times 170 \mathrm{~mm}$ | 49022 |
| ESGT 120 |  | 120 A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490205 |
| ESGT 160 |  | 160 A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490210 |
| ESGT 220 |  | 220 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490212 |
| ESGT 350 |  | 350 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490215 |
| ESGT 420 | Phase clipping control | 420 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490370 |
| ESGT 560 |  | 560 A | $600 \times 540 \times 346 \mathrm{~mm}$ | 490373 |
| ESGT 720 |  | 720 A | $600 \times 540 \times 346 \mathrm{~mm}$ | 490376 |
| ESGT 1000 |  | 1000A | $600 \times 540 \times 346 \mathrm{~mm}$ | 490379 |
| ESGT 1600 |  | 1600 A | $850 \times 750 \times 470 \mathrm{~mm}$ | 490385 |
| ESGT-SP 75 | $\begin{gathered} \text { 3-phase, } \\ \text { 3-wire system } \end{gathered}$ | 75A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490354 |
| ESGT-SP 90 |  | 90A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490355 |
| ESGT-SP 120 |  | 120A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490342 |
| ESGT-SP 160 | Burst control | 160 A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490344 |
| ESGT-SP 220 |  | 220 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490345 |
| ESGT-SP 350 |  | 350 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490350 |
| ESGT-SP-N 90 | 3-phase, 4-wire system Burst control | 90A | $360 \times 252 \times 170 \mathrm{~mm}$ | 490368 |
| ESGT-SP-N 220 |  | 220 A | $360 \times 445 \times 240 \mathrm{~mm}$ | 490360 |



ESGT
ESGT series thyristor control unit (open design, 1 -phase AC-controller; ESGT with load current up to 350A)

| tYpe desicnation | LOAD | max. LIAD CURRENT | dimensions | ART. no. |
| :---: | :---: | :---: | :---: | :---: |
| ESGT-1PH 75 | 1-phase <br> Phase clipping control | 75A | $260 \times 205 \times 170 \mathrm{~mm}$ | 490317 |
| ESGT-1PH 90 |  | 90A | $260 \times 205 \times 170 \mathrm{~mm}$ | 490318 |
| ESGT-1PH 220 |  | 220 A | $360 \times 250 \times 170 \mathrm{~mm}$ | 490224 |
| ESGT-1PH 350 |  | 350 A | $360 \times 250 \times 170 \mathrm{~mm}$ | 490314 |
| ESGT-1PH-SP 75 | 1-phase <br> Burst control | 75A | $260 \times 205 \times 170 \mathrm{~mm}$ | 490329 |
| ESGT-1PH-SP 90 |  | 90 A | $260 \times 205 \times 170 \mathrm{~mm}$ | 490330 |
| ESGT-1PH-SP 220 |  | 220 A | $360 \times 250 \times 170 \mathrm{~mm}$ | 490322 |

SGT series additional options and accessories

| AdDITIONAL OPTIONS | LOAD | DESCRIPTIION | ART. No. |
| :---: | :---: | :---: | :---: |
| ${ }_{\text {J E ESGT }}$ | 3 -phase | Constant-current regulation, 3 current tranformers | A50008 |
| /U ESGT |  | Constant-voltage regulation | A50009 |
| /BEESGT |  | Current-limit control with high-speed disconnection | A50010 |
| /AI ESGT |  | Current output ( $0-100 \%$ nominal current equ. $0-10 \mathrm{~V}$ ) | A50011 |
| /AU ESGT |  | Voltage output $0-10 \mathrm{~V}$ trimmable to nominal voltage | A50012 |
| 124 V DC ESGT |  | Control voltage 24V DC | A50013 |
| 1400VAC ESGT |  | Control voltage 400V AC | AS0014 |
| J ESGT-1PH | 1-phase | Constant-current regulation, current transformer included | As000 1 |
| /U ESGT-1PH |  | Constant-voltage regulation | A50002 |
| /IB ESGT-1PH |  | Current-limit control with high-speed disconnection | A50003 |
| /AA ESGT-1PH |  | Current output (0-100\% nominal current equ. $0-10 \mathrm{~V}$ ) | A50004 |
| /AU ESGT-1PH |  | Voltage output $0-10 \mathrm{~V}$ trimmable to nominal voltage | As0005 |
| 124V DC ESGT-1PH |  | Control voltage 24V DC | A50006 |
| /400VAC ESGT-1PH |  | Control voltage 400V AC | A50007 |
| ACCESSORIES |  | DESCRIPTION | ART. No. |
| R20 10конм | Remote potentiometer, scale 1-10, 10k $\Omega$ |  | 282131 |



TBG, TBW series analogue hour meters

|  | tBg serls, dC voltage |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TYPE desicnation | SUPPLY VOLTAGE | COUNTING | Capacity | ACCURACY OF | dimensions | ART. No. |
| ${ }^{\text {mise }}$ | TBG30.18 | $12-48 \mathrm{VCC}$ | 999999 h |  | 0.1 h | $53.2 \times 28.2 \times 63 \mathrm{~mm}$ | 711056 |
|  | TBG40.17 |  |  |  | $48 \times 48 \times 38 \mathrm{~mm}$ | 711025 |
|  | TBG70.18 |  | 99999 |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711435 |
| твG/tвWзо | TBG70.29 |  |  |  | $35 \times 90 \times 60 \mathrm{~mm}$ | 711408 |
|  | tBw SERIES, AC voltace |  |  |  |  |  |  |
|  | TYPE desicnation | SUPPLY VOLTAGE | $\begin{array}{\|l\|} \text { RATED } \\ \text { FREQUENCY } \end{array}$ | COUNTING CAPACITY |  | ACCURACY OF READING | dimensions | ART. No. |
| Heb | TBW40.18 | 24 VaC | 50 Hz | 99999 h |  | 0.01 h | $48 \times 48 \times 38 \mathrm{~mm}$ | 711045 |
| 9 | TBW40.18 | ${ }^{115 V} \mathrm{~V}$ AC |  |  | $48 \times 48 \times 38 \mathrm{~mm}$ |  | 711042 |
| Uu0utan | TBW70.18 | 115 VaC |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ |  | 711434 |
|  | TBW30.18 | 230 VAC |  |  | $53.2 \times 28.2 \times 63 \mathrm{~mm}$ |  | 711050 |
|  | TBW40.18 | 230 VAC |  |  | $48 \times 45 \times 38 \mathrm{~mm}$ |  | 711040 |
|  | TBW70.18 | 230 VAC |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ |  | 711430 |
| TBG/tBW40 | TBW70.29 | 24 VaC | $50 / 60 \mathrm{~Hz}$ |  | 0.1 h | $35 \times 90 \times 60 \mathrm{~mm}$ | 711355 |
|  | TBW70.89 | 48 VAC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711139 |
|  | TBW70.89 | 115 V AC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711140 |
|  | TBW70.89 | 230 VAC |  |  |  | $35 \times 105 \times 60 \mathrm{~mm}$ | 711141 |
|  | TBW70.29 | 230 VAC |  |  |  | $17.5 \times 85 \times 61.5 \mathrm{~mm}$ | 711350 |
|  | ACCESSORIESTBG, TEW | DESCRIPTION |  |  |  |  | ART. No. |
|  | SB-TBX30 | Tension bracket for TBG/TBW30 |  |  |  |  | 711809 |
|  | B55-TBX40 | Shutter for TBG/TBW40 ( $55 \times 55 \mathrm{~mm}$ ) |  |  |  |  | 711800 |
|  | ME72-TBX40 | Screen for TBG/TBW40 (72 $\times 72 \mathrm{~mm}$ ) |  |  |  |  | 711801 |
|  | SB-TBX40 | Retaining clip for TBG/TBW40 |  |  |  |  | 711807 |
|  | DR-TBW40 | Sealing ring for TBW40 (P54) |  |  |  |  | 711813 |
| G/TBW70.18 | KA-TB>70.29 | Terminal cover for TBG/TBW70.29 (sealable) |  |  |  |  | 711812 |




DRAN30-24A


DRA 480-24A* (Backup)


AMR1-24

| INDUSTRIAL HOUSING FOR SWITCH CABINET AND PLANT CONSTRUCTION |  |  | INDUSTRIAL HOUSING FOR BACK-UP SYSTEMS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage 5-48V DC <br> Output power 5-960W <br> Overload and short circuit protection |  |  | $\checkmark$ Power supply units with total discharge <br> $\checkmark$ For back-up systems (e.g. batteries) <br> $\checkmark$ Output voltage $12-28.5 \mathrm{~V}$ DC <br> $\checkmark$ Output power $30-480 \mathrm{~W}$ |  |  |
| Output voltage | Output power | Output current | Output voltage | Output power | Output current |
| 5 DDC | 5 w | 1A | 12 V DC | 30w | 2.2A |
|  | 10w | 2 A |  | 60w | 4.4A |
|  | 15w | 3 A |  | 120w | 8.8A |
|  | 30 W | 6 A | 24 V D | 30w | 1.1A |
|  | 50w | 10A |  | 60w | 2.2A |
| 12 VDC | 10w | 0.8 A |  | 120w | 4.4A |
|  | 18W | 1.5A |  | 240w | 8.8A |
|  | 30w | 2.54 |  | 480w | 17.6A |
|  | 42 W | 3.54 | INSTALLATION HOUSING FOR BUILDING AND PLANT ENGINEERING |  |  |
|  | 60w | 5A |  |  |  |
|  | 76W | 6.3 A |  |  |  |
|  | 120w | 10A | Output voltage 12-24V DC |  |  |
| 15V DC | 5 W | 0.3 A | $\checkmark$ Output power 10-100w <br> $\checkmark$ Overload and short circuit protection |  |  |
|  | 18 W | 1.2 A |  |  |  |
|  | 42W | 2.8A |  |  |  |
| 24 VDC | 5 W | 0.2A |  |  |  |
|  | 10w | 0.4A | Output voltage | Output power | Output current |
|  | 18 W | 0.8A | Ouputvoriage | Ouput power | Ouput current |
|  | 30W | 1.25 A | 12 VDC | 10w | 0.8A |
|  | 48W | 2 A |  | 24W | 2A |
|  | 60W | 2.54 |  | 54W | 4.5A |
|  | 75W | 3.2 A |  | 90w | 7.5A |
|  | 120w | 5A | 24 VDC | 10w | 0.4A |
|  | 240W | 10A |  | 24W | 1A |
|  | 300w | 12.5A |  | 36 W | 1.5 A |
|  | 480W | 20 A |  | 60w | 2.5 A |
|  | 960w | 40 A |  | 100w | 4.2A |
| 48 VDC | 120 w | 2.5 A |  |  |  |
|  | 240W | 5A | ARTICLE NUMBERS AND MORE INFOS ABOUT DC POWER SUPPLIES |  | -1 www.tele-online.co |
|  | 480w | 10A |  |  |  |



For contact data of your local distributor please visit http://www.tele-online.com/en/organization/distribution/

## hotele

TELE Haase Steuergeräte Ges.m.b.H.
CALL US
$+43 / 1 / 61474-0$

ONLINE SUPPORT
info@tele-online.com
Vorarlberger Allee 38

